曲面积分∫∫xyzds=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 22:04:35
曲面积分∫∫xyzds=
曲线积分和曲面积分的几何意义是什么,和二重积分三重积分有什么区别.如果∫后的式子为1,分别表示面积还是体积

二重积分,可以看做一个高函数f(x,y),在底面∑上的积分,所以他表示的是底面为∑的几何体的体积..三重积分,可以看做一个密度函数f(x,y),在几何体V上的积分,所以他表示的是几何体V的质量..第一

计算曲面积分∫∫x^3dydz+y^3dzdx+z^3dxdy,其中积分区域为,x^2+y^2+z^2=1的外侧.

因为用完高斯公式后是三重积分,三重积分的积分区域中x²+y²+z²≤1,并不等于1.因此不能用1来代替x²+y²+z².有个很简单的方法记住

设曲面∑:x^2/a^2+y^2/b^2+z^2/c^2=1上的点(x,y,z)处的切平面为π,计算曲面积分∫∫∑1/λ

对曲面在第一象限内的部分,设x=a*r*costy=b*r*sint则z=c*sqrt(1-r^2)代入计算得到8*pi/3*abc*(1/a^2+1/b^2+1/c^2)再问:麻烦您写一下具体步骤呗

计算曲面积分 I=∫∫(S+) (x^3)dydz+(z)dzdx+(y)dxdy 其中s+为曲面x^2+y^2=4,与

用高斯公式:P=x^3,Q=z,R=y,积分区域为圆柱:x^2+y^2=4,与平面z=0,Z=1I=∫∫∫3x^2dxdydz(下面用柱面坐标)=3∫(0,2π)(cosθ)^2dθ∫(0,2)r^3

利用高斯公式计算曲面积分∫∫xdydz+z^2dxdy/(x^2+y^2+z^2),其中曲面∑是由x^2+y^2=R^2

使用高斯公式后,化简后被积函数跟积分区域的圆柱体挺难构造关系,就按投影一步一步算吧.∑被积区域可以看成3个平面围成,S1:z=R,S2:z=-R,S3:x^2+y^2=R^2.可以看出S1,S2只在x

高数题设曲面∑为柱面x^2+y^2=1介于平面z=-2与z=2之间的部分,则曲面积分∫∫(∑)(x^2+yz+y^2)d

首先要知道,投影时不能像xoy面投影的,因为在xoy面上投影为线条,没有范围的……其实这个问题不用投影就可以解决的,先看看曲面∑是关于xoz面对称的,但是积分函数中yz一项为y的奇函数,由对称性可知,

第二型曲面积分 计算曲面积分∫∫xdxdy+ydxdz+zdxdy,∑是z=(x^2+y^2)^1/2在z=0和z=h之

补上两个面z=0与z=h,三个面上用高斯公式,得πh^3,z=0上的积分是0,z=h上的积分是πh^3,所以结果是0再问:为什么要补上z=0,根本没有用啊,这是圆锥面啊再答:那倒是,不用加再问:而且z

计算曲面积分I=∫∫ydxdz+(z+1)dxdy 其中Σ是圆柱面 x^2+y^2=R^2被x+z=

这个圆柱面在xoy上的投影为0所以dxdy=0写出圆柱面的参数方程x=Rcost,y=Rsint,0

计算三重积分∫∫∫zdv,曲面z=√(2-x^2-y^2)及z=x^2+y^2围成的闭区域

积分限定的是正确的,不是正解.∫∫∫zdv=∫(0,1)zπz^2dz+∫(1,√2)zπ(2-z^2)dz=π/4+π[z^2-(1/4)z^4](1,√2)=π/4+π[(2-1)-(1-1/4)

曲面积分∫∫xdydz+z^2dxdy/(x^2+y^2+z^2),其中曲面∑是由x^2+y^2=R^2及z=R,z=-

这题,昨天刚刚答了.这个不能用高斯定理,因为在这个比区域内,含有积分函数的奇点(0,0,0)所以分开来求即可.对于z=R和z=-R两个面∑1和∑2,因为dz=0而且两个面处,z=R处的投影,是朝上的圆

球面x^2+y^2+z^2=9,求曲面积分∫(闭合)x^2ds

球面x^2+y^2+z^2=9∫(闭合)x^2ds=(1/3)∮3x^2ds因为积分曲面为球面,根据对称性有,∮x^2ds=∮y^2ds=∮z^2ds=(1/3)∮(x^2+y^2+z^2)ds因为是

曲线和曲面积分曲线积分和曲面积分中,对于一个这样的积分∫f(x,y,z)dx+g(x,y,z)dy+h(x,y,z)dz

结果是-14/15,伙计,你对y轴积分的时候肯定积分错误了.我们来看,前半部∫L(x^2-2xy)dx=2/3,后半部分你肯定积分错误了.你是不是将y=x^2代入了∫(y²-2xy)dy中变

带绝对值的三重积分∫∫∫ |z-x^2+y^2| dxdydz,(注意这里有绝对值)其中空间闭曲面由z=0,z=1及曲面

作柱面坐标变换,设x=rcosφ,y=rsinφ,z=z故∫∫∫|z-x^2+y^2|dxdydz=∫(0,2π)dφ∫(0,√2)rdr∫(0,1)|z-r|dz(符号∫(a,b)表示从a到b积分,