曲面积分求立体表面

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:16:55
曲面积分求立体表面
若∑是由平面x+y+z=1及三个坐标面围成的立体表面外侧,则曲面积分∫∫∫(x+1)dydz+ydzdx+dxdy=

用高斯公式计算即可,令P=x+1,Q=y,R=1,则P'x=1,Q‘y=1,R’z=0,所以原积分=∫∫∫(P'x+Q‘y+R’z)dxdydz=2∫∫∫dxdydz,根据三重积分的几何意义,∫∫∫d

一道高数题 利用高斯公式求曲面积分题

再问:再问:好!!太牛了!这么难的题都会啊!!!能在问你个题吗?再答:easy啦,小学数学再问:你怎么什么题都会啊!!再答:当然啦,高数做来做去都是那几种题再问:我们刚学这一节,许多提我都不会啊再问:

利用三重积分计算由曲面所围成的立体的体积

由z=6-x-y,z=√(x+y)得D:0≤x+y≤4空间闭区域Ω可表示为:{(x,y,z)|√(x+y)≤z≤6-x-y,0≤x+y≤4}V=∫(上限2π,下限0)dθ∫(上限2,下限0)rdr∫(

曲面积分 散度定理 求流量

两种方法都可以,因为这是基于高斯公式的.你的第二种方法算的之所以不对,我估计你是在计算三重积分时把r=a代人了,具体计算如下,先求出div=2/r,因此流量=∫∫∫2dV/r,注意这时r=a不能代人,

用三重积分 求由曲面Z=X2+2Y2及Z=6-2X2-Y2所围成的立体的体积.

Ω由z=x²+2y²及2x²+y²=6-z围成.消掉z得投影域D:x²+2y²=6-2x²-y²==>x²+y

求曲面积分zdS,Σ是圆柱面x^2+y^2=1,平面z=0和z=1+x所围立体的表面

圆柱面x^2+y^2=1的投影的面积0,只计算平面z=0和z=1+x即可,而平面z=0代入为0平面z=1+x的投影:x^2+y^2

用三重积分求曲面z=2-(x^2+y^2)与z=X^2+y^2所围立体体积

稍等再答:再答:降三重积分为二重积分最简单。

高数题,求曲面积分 

答案是4πR^2,把积分区域的函数带入,就是一个被积函数为常数的积分了,乘以积分曲面的面积就好再问:你的答案不对再答:答案是多少再问:4兀再答:你把R等于1就是答案了,我想的是半径为R,是我疏忽了再问

曲面积分到底是什么意思,是指函数在曲面上求积分吗

曲面积分分两类:第一类曲面积分(对面积的曲面积分)几何含义,知道某曲面每点的面密度,求质量.具体例子:蛋壳的质量.第二类曲面积分(对坐标的曲面积分)几何含义,知道某曲面每点的流速,求单位时间内的流量.

matlab 绘制立体曲面图

参数的取值区间错了吧,0≤ψ≤π,0≤θ≤2π>>t=-2*pi:0.1:2*pi;>>r=-2*pi:0.1:2*pi;>>[u,v]=meshgrid(t,r);>>X=2*sin(u).*cos

求由曲面z=x^2+y^2,z=4-y^2所围立体的体积,用三重积分

∵所求体积在xy平面的投影是S:x²/4+y²/2=1∴所求体积=∫∫[(4-y²)-(x²+y²)]dxdy=∫∫(4-x²-2y

mathematica曲面积分问题求大神指导

实际上呢,Mathematica对于非矩形区域上的积分是有一种非常简洁的语法的,并不需要自己去弄这么复杂的换元,那就是:Integrate[x^2y^2Sqrt[R^2-x^2-y^2]Boole[x