有七个乒乓球,其中有一个是次品,质量较轻,用天平称这些
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 11:21:15
三次再答:决对正确再答:帮我点下采纳再答:^O^再问:为什么呢再问:请告诉我
能,先选六个称,一边三个天平若平衡,则没称的那个是次品;若天平不平衡,取出轻质量的那边三个球,取两个称,若平衡,则没称的那个是次品,不平衡,则轻质量的那个是次品.
4次.第一次:先天平两边各一打,称一次,可确定有一打较轻;第二次:再将这一打六个一边,置于天平两边,可确定轻的一边;第三次:再将轻的那边三个一边,置于天平两边,可确定轻的一边;第四次:最后将轻的那边一
1把九个球分成三组2任意拿出两组放在天平上3看天枰示数(如果天平不平衡,那么那个次品就在轻的那边.如果天平平衡,则那个次品在没放在天平上的那一组中)4找出有次品的那一组5再把这一组的任意两个球放在天平
有七个小球,其中六个是实心的,一个是空心的次品,请你用天平最多称两次,将次品找出来.先在天平两边各放3个.如平衡.多余的一个是空心的;不平衡在把轻的那3个中的两个分别放在天平两端.如平衡.多余的一个是
用天称3次就一定能找出次品
一开始把天平两边一边放4个,还有4个留着.情况1:如果两边平了,那么坏的肯定是在留着的4个里面.把4个球编号为1,2,3,4.先把1和2拿出来称,如果平了,那么就意味着坏的在3和4里面.那么由于1和2
先假设天平有两个托盘或等重的容器能放下12个球,那么就有称法:第一次:36个球分成3组,每组12个,天平两边都放12个,那边轻,次品就在那组;如果是平衡的,说明次品在没称的一组中.第二次:12个再分3
第一种情况;天平左右各放3个,如果平衡.再把其余的3个放2个到天平的两边,如果平衡,剩下的一个就是次品.如果不平衡,轻的一边就是次品.第二种情况:天平左右各放3个,不平衡.轻的一边中必有次品.再把轻的
1两边各6个2再把其中的6个分成3对33其中的3个中再1对1即可
分4组,前3组各4个,最后一组1个.第一次1组放左,2组放右.如平衡则坏在3或4组.第二次天平左放3组1号球和2号球,右边放3组的3号球和之前1组的一个好球,如平衡则坏是3组4号或者4组那个.第三次用
可以.首先取6个,天平两边各放3个.如果天平两边重量相同,则把剩下得2个放到天平两端,就可以称出哪个是次品.如果天平两边重量不等,从重的那一边的3个球中,任意取两个,如果天平平衡,则剩下的是次品,如果
3个一组,共3组1、2组先秤,如果平衡,就是3组里的然后再秤3组里的就出来了
先分成三组:A组3个,B组3个,C组2个.第一次:把A,B两组拿去放在天平左右称.1)平衡:这6个都是正货.取其中一个放于一边.在第C两个中取1个放于另一边.a.平衡:这个正货,则剩余那个假.b.不平
9个平均分成3份,每份3个,任选2份放在天平两侧,如果天平不平衡,次品在轻的一份;如果两侧平衡,次品在剩下的一份中.3个平均分成3份,每份1个,任选2份放在天平两侧,如果天平不平衡,次品是轻的一头;如
1.分为3组,每组3个.2.先比较两组,如果这两组相等,则次品在另外一组;把另外一组拿两个出来比较,如果相等,则次品为第三个;3.如果先比较的两组有一组比较轻,则次品在这里面;拿出两个比较,如果相等,
已经知道其中一个是次品,也就是说只剩9个了...所以另一个也是次品的概率应该是3/9=1/3...不过可能还要考虑已知的那个次品是第一次抽的还是第2次抽的..不知道是不是呢~再问:对滴,后面答案写的不
你好,我是这样解的,不知道你否理解:第一次,先将1-4号放在左边,5-8号放在右边.1.如果右重则坏球在1-8号.第二次将2-4号拿掉,将6-8号从右边移到左边,把9-11号放在右边.就是说,把1,6
需要称两次第一次任取4个,一边放置两个,若天平不平衡,则在托盘高的一侧,再将这两个分放在天平两侧,找出轻的一个即为次品;若开始时天平平衡,那么次品在剩余的三个中,任取两个分放在天平两侧,若不平衡,轻的
其实这个题答案不唯一的.最多的话是27个.