有木有3dn阶行列式

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 05:33:13
有木有3dn阶行列式
一道线性代数题,行列式Dn

该行列式每行元素之和相等,此时把各列都加到第1列,提出第1列公因子,然后将第1行乘-1分别加到其余各行D就化为了‘爪’型.按最后1行展开,接着按第1行第1列展开得:Dn=(n-1-a)(a+1)(-a

四阶行列式,利用行列式性质计算.

凑上或下三角形是一种,把一行或一列化为只剩一个非零数,再展开为三阶也行.下面说前者高斯消元法解线性方程组学了吗?和那差不多,但不完全一样{第二行减两倍第一行第三行减四倍第一行第四行加三倍第一行}这样第

计算n阶行列式Dn计算n阶行列式

用性质化为上三角形.经济数学团队帮你解答.请及时评价.

线性代数,计算n阶行列式Dn=[a a…a x][a a…xa]…[a x…a a][x a…a a]

将第2,3,.,n列均加到第1列,然后第1,2,.,n-1行均减去第n行,得D=(-1)^[n(n-1)/2][x+(n-1)a](x-a)^(n-1)再问:再答:

计算行列式Dn/x a ...a/ /a x ...a/ /........./ /a a ...x/

计算行列式Dnxa...aax...a......aa...x把第2,3,...,n列都加到第1列,提出公因子x+(n-1)a,得1a...a1x...a......1a...x第1行乘-1加到2,3

所有非零的k阶子式的首1最大公因式成为A的k阶行列式因子中的首1是指什么?还有例如矩阵A的行列式值是6,那Dn为什么不是

应该是简说,是指首项系数为1(即最高次项系数为1),最大公因式不唯一,f(x)是最大公因式,那么kf(x)也是最大公因式(k不为零).第二个问题问的有些不清楚,但估计也是这个问题.

n阶行列式,用行列式的定义

因为在不同行不同列的非零元素的积只有:n*(n-1)*…*1=n!反序数为n-1根据定义:d=(-1)^(n-1)*n!有不懂欢迎追问再问:不太懂呢能不能再细点没学过线性代数。。。再答:建议你先看看书

若n阶行列式Dn中每一行上的n个元素之和等于零,则Dn=

Dn=0,把每一列都加在其中一行,使这一行等于0,根据行列式的性质有一行(列)等于0,那么行列式也等于0

线性代数:计算行列式Dn=a 1 .1 a Dk列为k阶行列式

请问你学到展开定理了吗?只能用性质做?再问:学了,展开,余子式,性质都学了,那应该怎么做?再答:a0...010a...00.........00...a010...0a第1行减a倍的第n行,得00.

设n阶行列式Dn=|aij|,已知aij=-aji,i,j=1,2,Ln,n为奇数,求Dn的值

奇数阶反对称矩阵的行列式等于0.利用Dn=Dn^T=(-1)^nDn=-Dn可知Dn=0.

刘老师您好,为何三阶单位矩阵的行列式是该行列式的3次方呢,

A×comp(A)=|A|×E  三阶单位矩阵E3有|E3|^2=|comp(E3)|  为何|E3|^3=|E3|×|comp(E3)|=|E3×comp(E3)|=||E3|×E3|=|E3|? 

线性代数的问题计算行列式(Dk为k阶行列式)Dn=det(aij),其中aij=|i-j| 请写出具体步骤

所求行列式=012...n-1101...n-2210...n-3......n-1n-2...0依次作:ri-r(i+1),i=1,2,...,n-1-111...1-1-11...1-1-1-1.

n阶行列式 Dn=|x a ...a| |a x ...

所有列加到第1列所有行减第1行行列式化为上三角D=(x+(n-1)a)(x-a)^(n-1)再问:能详细点吗?最好发张图再答:所有列加到第1列x+(n-1)aa...ax+(n-1)ax...a...

线性代数Dn计算行列式中所有元素的代数余子式之和

这个题主要考察行列式展开性质和行列式的性质

线性代数的一道题,求大神解释为什么后一个行列式就是Dn-1满意继续给分

因为这个行列式和Dn相比形式一模一样,但是由于进行了一次展开,所以降了1阶.所以记为Dn-1再答:可以采纳吗?

计算行列式3个行列式 求详解

第2题0123...n-11012...n-22101...n-33210...n-4.n-1n-2n-3n-4...0依次作:c1-c2,c2-c3,...,c(n-1)-cn得-1-1-1-1..

线性代数,证明行列式Dn=cosna.

看最后三行,按最后一行展开,ncosa对应的子式是D(n-1),但是最后1行倒数第二列对应的是D(n-2)所以递推式D(n)=ncosaD(n-1)-D(n-2)001(n-2)cosa100001(

计算n阶行列式Dn= (1 1 1 … 1 1 2 0 … 0 1 0 3 … …

这是爪形行列式,若学习过,可以直接按展开公式得结果.Dn=n!*(1-1/2-1/3-1/4-...-1/n)若没有学习过,也可以按r1-r2/2-...-ri/i-...-rn/n化为下三角(或c1