有没有求矩阵的初等变换容易懂的方法

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 14:44:59
有没有求矩阵的初等变换容易懂的方法
利用初等行变换求下列矩阵的秩

3-2r1,r1-2r2,r4-r201-111201-302-1r3-r1,r4-2r101-111200-2001r3+2r401-1112000001交换行11201-1001000秩=3

利用初等变换求逆矩阵及矩阵的秩

1.(A,E)=5311001-3-2010-521001r1-r3,r2+2r3101010-1-910012-521001r2-r1,r3-2r1101010-1-1900-113-1501-20

用矩阵的初等变换求矩阵化为标准型

1-123211-20r2-3r1,r3-r11-1205-50-1-2r2*(1/5),r3+r21-1201-100-3c2+c1,c3-2c1,c3+c2,r3*(-1/3)100010001注

用初等行变换求下列矩阵的逆矩阵

用初等行变化求矩阵的逆矩阵的时候,即用行变换把矩阵(A,E)化成(E,B)的形式,那么B就等于A的逆在这里(A,E)=1-32100-30101011-1001第2行加上第3行×3,第3行减去第1行1

将矩阵初等变换得到的新矩阵,与原来的矩阵有什么联系?为什么要进行初等变换

1.矩阵A经初等变换化为B,则存在可逆矩阵P,Q使得PAQ=B2.由于初等变换不改变矩阵的秩,故A与B的秩相同.所以我们可以把A化成一个简单的形式便于求矩阵的秩3.对A进行初等行变换,不改变A的列向量

初等行变换求矩阵的逆矩阵

(A,E)=12210021-20102-21001r2-2r1,r3-2r11221000-3-6-2100-6-3-201r3-r21221000-3-6-2100092-21r2*(-1/3),

利用初等变换求矩阵的逆矩阵.

注意方法,从左到右逐列处理(A,E)=3-20-11000022101001-2-3-2001001210001r1-3r3049510-30022101001-2-3-2001001210001r1

求:初等变换法求逆矩阵的例题带详解的,

求A的逆矩阵,A=2231-10-121(A,E)=2231001-10010-121001r1-2r2,r3+r20431-201-10010011011r1-4r3,r2+r300-11-6-41

矩阵的初等变换有没有技巧?还有怎么辨别一个方阵有没有可逆矩阵?

一般来说,将一个矩阵化为标准阵遵循下面方法:先用第一行消掉下面所有行的第一项,即用a11将a21,a31,……an1消为0再用第二行将下面所有行的第二项消为0再用第三行将下面所有行的第三项消为0依次做

利用初等变换求下列矩阵的秩

设A={{3,2,-1,-3,-2}{2,-1,3,1,-3}{7,0,5,-1,-8}}由于阶梯型矩阵的秩就是其非零行(或列)的个数,而初等行变换不改变矩阵的秩,所以r(A)=r(P)=3.可以参考

用初等变换求矩阵的秩是否只能用行初等变换?

不是的对于求秩无论行列的初等变换都可以哦~希望对楼主有所帮助,

矩阵的初等变换对一个矩阵施行行初等变换,在没有结束之前是不能同时施行列初等变换的,

问题描述不清,你说的没有结束之前是什么意思?施“行行”初等变换,对一个矩阵,行变换,列变换都可以做.有时候有区别,关键看你的目的是什么.好比,用来求逆,只能作行的或者列的;解线性方程组,对增广矩阵或系

用初等变换的逆矩阵公式求逆

用初等行变化求矩阵的逆矩阵的时候,即用行变换把矩阵(A,E)化成(E,B)的形式,那么B就等于A的逆在这里(A,E)=1000100001000100-10100010030-60001第3行加上第1

线性代数一道初等变换求逆矩阵的题

用初等行变化求矩阵的逆矩阵的时候,即用行变换把矩阵(A,E)化成(E,B)的形式,那么B就等于A的逆在这里(A,E)=10001000120001002130001012140001第4行减去第2行,

线性代数,矩阵的初等变换

因为|A|0∴A可逆∴AX=A+2XAX-2X=A(A-2E)X=A∵A-2E=301200110-020014002=1011-10012同样|A-2E|0∴A-2E也是可逆的∴X=A(A-2E)^

线性代数的初等矩阵变换

11-20701-1030001-30001-3