服从 ) 1 , 0 ( 上的均匀分布|x1-x2|

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 11:30:40
服从 ) 1 , 0 ( 上的均匀分布|x1-x2|
设随机变量X,Y相互独立,且服从[0,1]上的均匀分布,求X+Y的概率密度.

不太清楚你的意思,是不知道积分区域怎么出来的?还是不知道怎么积分?其实就是左右两块区域求积分和,见下图再问:不好意思没说清楚,是不知道怎么积分的再答:就是图中黑色区域,左边矩形和右边梯形的积分和。事实

设随机变量X在[0,1]上服从均匀分布,Y在[2,4]上服从均匀分布,且X与Y相互独立,则D(XY)=

均匀分布的期望方差公式都记得吧,套用一下就行了EX=1/2EY=3X与Y相互独立所以EXY=EXEY=3/2E(XY)²=∫(0到1)dx∫(2到4)1/2x²y²dy=28/

随机变量X服从[0,4]上的均匀分布,Y=(X-1)/2的密度函数为

Y服从[-0.5,1.5]的均匀分布,密度(函数)为0.5.

设随机变量x服从(0,1)上的均匀分布,求Y=e^X的数学期望和方差

XU(0,1)密度函数:等于:1当0再问:这是标准答案了吧?再答:按公式计算而得:若x的概率密度函数为f(x),那么随机变量x的函数g(x)的数学期望和方差分别为:E[g(x)]=∫g(x)f(x)d

概率论,X,Y相互独立,且都服从[0,1]上的均匀分布

选AA选项:既然xy相互独立且均匀分布,那么(x,y)也服从区域[0,1]的均匀分布就好比你用铅笔在[0,1]这条直线上随意划点和你在边长为1的正方形内随意划点,他们都是均匀分布的B选项明显不对,当x

设随机变量X,Y都服从区间【0,1】上的均匀分布,则E(X=Y)=?

随机变量X,Y(不独立也行),则E(X+Y)=E(X)+E(Y)随机变量X,区间【a,b】上的均匀分布,则E(X)=(a+b)/2E(X+Y)=E(X)+E(Y)=1/2+1/2=1

设随机变量x服从(0,1)上的均匀分布,Y=e^x 求y的数学期望 和 方差

楼上方差错了方差(x*(e^x-1)^2在(0,1)上的积分)

设随机变量X服从(0,1)区间上的均匀分布,则随机变量Y=X²的密度函数

用分布函数法X服从(0,1)区间上的均匀分布f(x)=1,0

X与Y独立,且X服从(0,1)上的均匀分布,Y服从参数为1 的指数分布,求Z=X+Y的概率密度?

有卷积公式啊,fz(z)=[fx(Z-Y)fy(y)dy其中[表示积分号,积分区域是整个定义域对于这个题,代入上式fz(z)=[1*e的-y次方dy积分区域是0到1,积分出来等于1,在其他范围内是0,

X与Y独立,且X服从(0,1)上的均匀分布,Y服从参数为1 的指数分布,求P{X=min(X,Y)}

令Z=min(X,Y),则:P{Z=min(X,Y)>z}=P{X>z,Y>z}=P{X>z}*P{Y>z}易知:P{X>z}=1-z(0==0)所以:P{Z=min(X,Y)>z}=[1-z]*[1

设随机变量X,Y都服从区间[0,1]上的均匀分布,则E(X+Y)=

由于XY独立,那么E(X+Y)=EX+EY均匀分布其概率函数就是f(x)=1/(1-0)=1(0

相互独立随机变量X与Y都服从[0,1]上的均匀分布,求Z=X-Y密度函数

先求分布函数,其中Z的取值范围[-1,1],应该要分类讨论

设随机变量X,Y,Z都服从区间[0,1]上的均匀分布,E[(X-2Y+Z)^2]

没有给出是否相互独立吗再问:没有给,不过应该是的吧,(是英文版的书,貌似没说独立这个词~)再答:若不独立,应该给出联合分布,若独立,就分解开求就行了饿:=E[x^2+4Y^2+Z^2-4XY+2XZ-

设随机变量X在(0,1)上服从均匀分布,(1)求Y等于绝对值X的概率密度.

Y=|X|因为X(0,1)所以Y=|X|就是Y=X所以概率密度fy(y)=1Y(0,1)其他0

设随机变量x服从【0,1】上均匀分布,求Y=e^x的概率密度!

FY(y)=P{Y小于等于y}=P{e*X小于等于y}=P{X小于等于lny}=FX(lny)fY(y)=fX(lny)(1/y)所以当0