期望E(X)=a,那么E(X的二次方)=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 19:35:48
EX^2与(EX)^2概念不一样,期望的运算只有特定的几个,别的不行.再问:E可以当做有分配率这回事吗再答:如果你不太了解期望,那你不要乱用。期望与方差的最基本公式是:DX=EX^2-(EX)^2EX
我记得不可以,x,y要是一个离散一个连续呢
(1).EY=2E(X)=2(2)E(Y)=∫(-∞,+∞)f(x)e^(-2x)dx=1/3如有意见,欢迎讨论,共同学习;如有帮助,
XU(0,1)密度函数:等于:1当0再问:这是标准答案了吧?再答:按公式计算而得:若x的概率密度函数为f(x),那么随机变量x的函数g(x)的数学期望和方差分别为:E[g(x)]=∫g(x)f(x)d
楼上方差错了方差(x*(e^x-1)^2在(0,1)上的积分)
E(X^2)-2EX+1=10E(X^2)-4EX+4=6所以EX=7/2E(X^2)=16D(X)=E(X^2)-[E(X)]^2=16-(7/2)^2
E(1-2X)=1-2E(X),D(1-2X)=4D(X).
E(X)已经是一个数,它的期望还是它本身E(X)
E(x)=∫(积分上限正无穷,积分下限为a)x*[1-(a/x)^3]dx=(1/2*x^2+a^3*x^-1)|(上限为正无穷,下限为a)=+∞+0-1/2*a^2-a^2=+∞-3/2*a^2因为
是随机变量X的方差
E(X)=∫(-∞,∞)e^y*(1/2π)^(1/2)*e^((y-u)/2)^2dy=e^(1/2+u)
离散型随机变量的一切可能的取值xi与对应的概率Pi(=xi)之积的和称为该离散型随机变量的数学期望.这是概念.随机变量X是指离散型的,设X的可能值有N个,则E(X)=求和(Xn/N)=求和(Xn)/N
/>∵X服从参数为1的指数分布,∴X的概率密度函数f(x)=e-x,x>00,x≤0,且EX=1,DX=1,∴Ee-2x=∫+∞0e-2x•e-xdx=-13e-3x|+∞0=13,于是:E(X+e-
是的.假设X服从均匀分布,即X~U(a,b),则数学期望E(X)=(ab)/2,再问:他是什么样的平均值,?E(X)代表什么
0,密度为偶函数,关于y轴对称,平均值为0再问:我已经做出来了,,期望是a。。。
因为E(C)=C【常数的期望是常数】E(X)=C【X的期望是个常数】于是E[E(X)]=E(X)………………E(X*X)=C【X*X的期望是常数】于是E[E(X*X)]=E(X*X)E(X+C)=E(
如果你想硬算的话,E(x)=∫(-∞→+∞)f(x)xdx=1/2∫(-∞→+∞)xe^(-|x|)dx=1/2∫(-∞→0)xe^xdx+1/2∫(0→+∞)xe^(-x)dx=1/2∫(-∞→0)
是的.E(g(x))=∫g(x)f(x)dx再问:你好,我还想问一下,E(X+常数)=EX+常数吗?再问:你好,我还想问一下,E(X+常数)=EX+常数吗?再答:是的,这是期望的性质。书上有的,书上也