某厂商的成本方程STC=Q3-10Q2 17Q 66
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 10:18:08
MC=3Q²-12Q+30,令MC=MR,即3Q²-12Q+30=30,解得Q=4,即利润最大化产量.STC=4³-6×4²+30×4+60,TR=30×4=1
(1)STC对Q求导,求得MC=0.3Q²-4Q+15我们知道当P=MC时,厂商能实现利润最大化55=0.3Q²-4Q+15得Q=20STC=310收益R=P*Q=1100利润π=
AC(Q)=TC(Q)/Q=0.04Q2-0.8Q+10+5/QAC(Q)=AVC(Q)+AFC(Q)则AVC(Q)=0.04Q2-0.8Q2+10AFC(Q)=5/Q当Q=0.8/(2*0.04)=
平均可变成本AVC=(0.04Q^3-0.8Q^2+10Q)/Q=0.04Q^2-0.8Q+10边际成本MC=STC'=0.12Q^2-1.6Q+10
AVC=0.1Q²-2Q+15短期供给函数是MC在AVC以上的部分,所以,P=0.3Q²-4Q+15(P>=5)
(1)短期均衡时,短期边际成本等于价格,即MC=0.3Q2(2次方)-4Q+15=55,算得Q=20,即短期均衡产量为20,利润=P*Q=55*20=1100.(2)当短期平均可变成本小于边际收益时,
短期均衡产量Q=20均衡价格P=20
1.完全竞争厂商的短期供给曲线就是边际成本曲线高出平均可变成本最低点的部分。由短期成本函数STC=Q3-10Q2+100Q+1000知:SVC=Q2-10Q+100,对该式求导得出SVC最小时的Q为5
对短期成本函数求一阶导数,可以得出MC=0.3Q2-4Q+15(此处我认为您的结果有误,因为Q^3的系数是0.1)再将上述方程反解出Q=...的形式,即为短期供给函数.
(1)smc=0.3Q^2-4Q+15P=MR=MC得Q=(最重要的是理解P=MR=MC)(2)smc=0.3Q^2-4Q+15AVC=0.1Q3-2Q2+15Q令SMC=AVC(3)短期供给函数为S
1.由STC=0.1Q3-2Q2+15Q+10得MC=0.3Q2-4Q+15MR=P=55=MCQ=20TR=P*Q利润=STC-TR当P=AVC时必须停产P=0.1Q2-2Q+15+10/QP=MC
TVC=TC-70.因为总成本=总可变成本+不变成本,显然本式中,永远不变的就是70,那么它就是固定成本,所以TVC=Q3-4Q2+100QAVC=TVC/Q我想你说的应该是平均可变成本吧,那个式子是
可变成本=Q3-4Q2+100Q不变成本=50TVC(Q)=Q3-4Q2+100QAC(Q)=STC(Q)/Q=Q2-4Q+100+50/QAVC(Q)=可变成本/Q=Q2-4Q+100AFC(Q)=
先求出停业点,即AVC的最低点AVC=STC/Q=0.04Q²-0.8Q+10,令dAVC/dQ=0.08Q-0.8=0,得Q=10,再求出MC=dSTC/dQ=0.12Q²-1.
完全竞争行业,利润最大化时:MC=MR=P所以3Q2-12Q+10=10Q=4π=40-13=27
利润最大时的条件是P=MC,MC=dTC/dQ=0.12Q^2-1.6Q+10,P=26,所以26=0.12Q^2-1.6Q+10,解得Q=20利润π=P*Q-TC=20*26-0.04*20^3+0
1可变成本是随着产量变化的可变成本是Q3—10Q2+17Q固定成本是固定不变的,不随着产量而改变即662AVC即平均可变成本=可变成本/产量AFC平均固定成本=固定成本/产量SAC平均陈本=总成本/产
(1)可变成本部分5Q3-4Q2+3Q不变成本部分50(2)TVC(Q)=5Q3-4Q2+3QAC(Q)=STC(Q)/Q=5Q2-4Q+3+50/QAVC(Q)=可变成本/Q=5Q2-4Q+3AFC
MC=STC'=3Q^2-9Q+30利润最大化条件MR=P=60=MC3Q^2-9Q+30=60Q^2-3Q-10=0Q=5利润π=PQ-STC=5*60-(125-4.5*25+150+100)=1