某实验中,a事件出现的概率pa=3分支1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 01:59:26
(1-p(A))^4=1-0.59p(A)=0.2
事件出现1次的概率是:3*(1/3)*(1-1/3)²=4/9事件出现3次的概率是:(1/3)³=1/27事件出现奇数次的概率是:4/9+1/27=13/27
设在1次试验中A出现的概率为p则1-(1-p)^4=0.59(1-p)^4=0.411-p≈0.8p≈0.2在1次试验中A出现的概率约是0.2
由题意得一次都不出现的概率=1-0.59=0.41=p的四次方——p为在一次试验中不出现的概率把P求出来以后再用1-p即为所求,用计算器敲一下就行了.
答案:[1-(1-2p)^2]/2在n次独立重复试验中事件A发生1次的概率为C(n,1)*(1-p)^(n-1)*p^1;事件A发生3次的概率为C(n,3)*(1-p)^(n-3)*p^3;事件A发生
好!要用到N重伯努利实验公式P(A)=1/4,n=3,C(3,2)*{(1/4)∧2}*(1/4)=3/64
A发生几次啊?如果是A恰好发生2次的货就选:D
首先我们要先算出A出现的概率分布0次(1-0.3)^4=2401/100001次0.3*(1-0.3)^3*4=4116/100002次0.3^2*(1-0.3)^2*C(4.4)/[C(2.2)*C
这个题目是较为简单的,分类讨论:A出现0次的概率为:0.7*0.7*0.7*0.7=0.2401B不出现A出现1次的概率为:4*0.3*0.7*0.7*0.7=0.4116B为:0.4116*0.6=
C(4,2)(2/3)^2*(1-2/3)^2=8/27四次中选2次*发生两次*未发生两次
设A发生的概率为p,A‘为A的对立事件,P(A)=p,P(A')=1-pB为A至少出现一次记A1,A2,A3为三次独立实验,A1',A2',A3'也相互独立.A至少出现一次的对立面为A一次也不出现,即
P(A)=13次试验出现1次A的概率:C(3,1)*1/3*(1-1/3)^2=4/9不超过50%,所以不一定出现A
解∵事件A在一次试验中发生的概率为p,事件A在一次试验中不发生的概率为1-p,∵事件A至少发生1次的概率是6581,它的对立事件是“在4次独立试验中,事件A一次也没有发生”∴由条件知C44(1-p)4
(p+q)^n-(p-q)^n即为出现奇数次概率的2倍出现奇数次概率为:[(p+q)^n-(p-q)^n]/2=[1-(p-q)^n]/2
可以伯努利实验P(k)=C(n,k)*p^(k)*q^(n-k)k为出现次数n为实验次数p+q=1C(n,k)为组合数n次试验中发生k次事件本题直接代入即可
C3^2*P^2(1-P)+C33*P^3=7/2754P^3-81P^2+7=054P^3-81P^2+9-2=054P^3-2-(81P^2-9)=02(27P^3-1)-9(9P^2-1)=02
错的,因为只是考虑了出现发生和不发生的情况,却没有讨论在哪次是发生了,哪次没有发生