某质点作简谐振动,其运动规律为S=Asinwt,该质点的速度为v=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:01:27
某质点作简谐振动,其运动规律为S=Asinwt,该质点的速度为v=
一个质点作简谐振动,振幅为A,在起始时刻质点的位移为A/2,且向x轴的正方向运动,代表此旋转矢量图为

答案:B再问:能解释吗?谢谢再答:旋转矢量是逆时针方向转动,它端点在x轴的投影点表示简谐振动,它在这个位置时它的投影点x轴正向运动

为什么?作简谐振动的质点位移最大时,加速度一定最小.

题干就是错误的.理由是做简谐运动的质点,其加速度满足a=-kx/m,当位移x最大时,加速度a最大,-号:方向与位移x方向相反.

已知质点作平面运动时,其速度大小为常数c,失径的角速度大小为常数w,求质点运动轨迹方程.

在极坐标下,容易得到dθ=wdt,θ=wt任意时刻;速度c²=(wr)²+(dr/dt)²dr/dt=√(c²-(wr)²)dr/√[c²-

7.(本题3分)一质点作简谐振动,周期为T.质点由平衡位置向x轴正方向运动时,由平衡位置到二分之一最大位移这段路程所需要

/>设质点的运动方程为x=Asin(wt)=Asin(2π/Tt),当t=0时,质点处于平衡位置且向x轴正方向运动,当质点运动到二分之一最大位移处时,有Asin(2π/Tt)=A/2,解得t=T/12

某质点作简谐振动周期为T,由平衡位置沿X轴负方向运动至最大负位移的一半处所需要最短时间(详解)

y=Asin(wt)A/2=Asin(wX)sin(wt)=1/2wt=Pi/6(最短时间)t=Pi/6ww=2Pi/Tt=T/12再问:初相就不考虑了吗再答:初相??质点就是从平衡位置开始振动的呀!

一质点以周期T作简谐振动,则从平衡位置到最大位移一半所需的最短时间为什么为T/12?

平衡位置到最大位移要T/4时间即sin[2(T/4)]=1令到达最大位移一半要x时间即sin[2(x)]=1/2可解得x=T/12

一质点做周期为T的简谐振动,质点由平衡位置运动到最大位移一半处所需的最短时间为?

从平衡位置运动到最大位移处,最短时间为T/4从平衡位置运动到最大位移一半处所用时间为运动到最大位移处的1/3sin30=1/2所以:最短时间为1/3*T/4=T/12再问:为什么是sin不是cos再答

振动和波.一个质点作简谐振动,周期为T,当质点由平衡位置向x轴正方向运动时,由平衡位置到二分之一最大位移这段路程所需要的

用时间-位移的正弦图像解就行了arcsin(1/2)=π/6(π/6)/(2π)=1/12所以需要12分之T详细说明:取质点由平衡位置向x轴正方向运动的时刻为时间原点,则简谐运动的时间-位移函数图像是

一质点以坐标系原点 O 为平衡位置沿 y 轴方向做简谐振动,其振动图像如右图所示,振动形成的简谐横波在...

其实最好的方法是复习书本.把例题看一遍,不懂的上网再找,更有正对性.时刻,质点A开始做简谐运动,其振动图象如图乙所示.质点A振动的周期是租

简谐振动的一道习题一质点作简谐振动,振动周期为T,则它由平衡位置运动至二分之一正向最大位移处所需要的最短时间为(A)T/

选A,一质点作简谐振动,它运动的位移与时间的关系图就是按正弦规律变化的,该正弦波形的周期为T,平衡位置即sint=0的位置,设振幅为1,则运动到1/2所用的时间t满足sint=1/2,即t=pi/6,

一质点沿x轴作直线运动,其运动方程为x=2+6t² -2t³,

题目所给运动方程中各量的单位应是国际单位.分析:①在t1=0时,位置为X1=2米处;在t2=4秒时,位置为 X2=2+6*4^2-2*4^3=-30米处,所以质点开始运动后4秒内的位移是 S=X2-X

一质点作振幅为3cm的简谐振动,已知质点的最大振动加速度为27cm/s,该简谐振动的周

设振动轨迹为:y=3sin(ωt+φ)则加速度为:a=y''=-3ω²sin(ωt+φ)由3ω²=27,解得:ω=3从而:T=2π/ω=2π/3

在学简谐振动时 知道做简谐振动的质点的动能与势能之和为定值.

简谐振动的质点的动能和简谐波中任一质元的动能的含义是一样的.简谐振动的质点的势能和简谐波中任一质元(注意这里我们不用质点,质元有体积或长度,比质点大,质元由质点组成)的势能的含义是不一样的.简谐振动的

某质点作简谐振动,周期为2s,振幅为0.06m,开始计时(t=0)时,质点恰好处在负向最大位移处,求

1\再写上初相位φ=0的简谐运动的方程y=AsinWtW=2π/T=π代入数据y=0.06sinπt始计时(t=0)时,质点恰好处在负向最大位移处把y=sinπt图象向右移动π/2得y=0.06sin

1.某质点作简谐振动,周期为2s,振幅为0.06m,开始计时(t=0),质点恰好处在负向最大位移处,求:

(l)该质点的振动方程;y0=0.06cos(2π/2t+π)=0.06cos(πt+π)m(2)此振动以速度u=2m/s沿x轴正方向传播时,形成的一维简谐波的波动方程;y=0.06cos[π(t-x

设质点作简谐振动的周期为T,t=0时刻动能最大,势能为零.此后动能和势能相等的最小时刻是_____.

柚机械能守恒Ep=Ek某点时Ep1=Ek1又Ep1+Ek1=Ep得2Ep1=Ep故高度为最高的一半由简谐运动的时间与位移图知位移为一半时时间是二分之根号二倍T即√2/2T再问:答案是T/8好象再答:额

质点作简谐振动,振动方程x=0.06cos(t.请看图,最好有过程.

(πt/3-π/2)就是t时刻的相位,-π/2是初相位也就是t=0时刻的相位.直接把t=2s代入(πt/3-π/2),结果就是2s时刻的相位.2π/3-π/2=π/6