dx (arctanx)*2(1-x*2)*1 2积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 04:04:25
∫(-1,1)arctanx/(1+x^2)dx=∫(-1,1)arctanxd(arctanx)=(arctanx)^2/2|(-1,1)=0
被积函数是偶函数,原函数(当C=0时)是奇函数∫(-1→1)x²arctan²x/(1+x²)dx=∫(-1→1)(1+x²-1)arctan²x/(
∫(arctanx)^2/(1+X²)dx∵d(arctanx)=1/(1+x²)dx∴∫(arctanx)^2/(1+X²)dx=∫(arctanx)^2d(arcta
=1/2(x^2arctanx-1+3arctanx)-1/2ln(1+x^2)+c再问:能写下过程吗。。。怎么转换的再答:∫xarctanxdx+∫arctanxdx=1/2∫arctanxdx^2
∫(arctanx)/(x^2(x^2+1))dx=∫(arctanx)/x^2dx-∫(arctanx)/(x^2+1)dx=∫(arctanx)d(1/x)-∫(arctanx)darctanx=
1/2*x^2-1/2*arctan(x)^2
∫1/(1+x^2)(arctanx)^2dx=∫(arctanx)^2d(arctanx)=(arctanx)^3/3+C
∫(x+arctanx)/x²dx=-∫(x+arctanx)d(1/x)=-(x+arctanx)/x+∫(1/x)d(x+arctanx)=-(x+arctanx)/x+∫(1/x)[1
罗比达法则,一直化简到2arctanx/(1/根号1+x^2)就可~中间一部为2arctanx/(根号1+x^2-x^2/根号1+x^2)就可
看图片:\x0d\x0d
∫(arctanx)/(x^2(x^2+1))dxletx=tanadx=(seca)^2da∫(arctanx)/(x^2(x^2+1))dx=∫[a/(tana)^2]da=-∫ad(cota+a
答:∫(arctanx)^3/(1+x^2)dx=∫(arctanx)^3d(arctanx)=(1/4)(arctanx)^4+C
∫[arctan(x)]*x^2/(1+x^2)dx=∫1*arctanxdx-∫(arctanx)/(x^2+1)dx={x*arctan(x)-∫x/(x^2+1)dx}-∫[arctan(x)]
我把做题的图片发给你,这里老是发不上来的
∫[0→1]xarctan²xdx=(1/2)∫[0→1]arctan²xd(x²)=(1/2)x²arctan²x-∫[0→1]x²arc
再答:诚邀您加入百度知道团队“驾驭世界的数学”。