dx (x 1)^2 3*(x-1)^4 3

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 18:29:23
dx (x 1)^2 3*(x-1)^4 3
求不定积分dx/根号x(1-x)

令(1-x)/x=t^2,则:1-x=xt^2,∴(1+t^2)x=1,∴x=1/(1+t^2),∴dx=[2t/(1+t^2)^2]dt.∴∫{1/√[x(1-x)]}dx=∫{[(1-x)+x]/

∫(x^2+1/x^4)dx

=∫x^2dx+∫1/x^4dx=1/3x^3-1/3*1/x^3+C=1/3(x^3-1/*x^3)+C

/ (cos x + 1 ) dx

也可以考虑,分子分母同时乘以1-cosx,被积函数化为:(1-cosx)/sin²xI=∫(1-cosx)/sin²xdx=∫[csc²x-cscxcotx]dx=-co

∫X^4/1+x dx.

∫x^4/(1+x)]dx=∫[(x^4-1)+1]/(1+x)]dx=∫(x^4-1)/(1+x)+∫1/(1+x)dx=∫(x²+1)(x²-1)/(1+x)dx+∫1/(1+

In x1.-----dx 2.求函数f(x)=-x^2Inx在[1,e]上的最值.x^2第一道题写错了。是x^2分之I

1.∫▒〖lnx/x^2dx=-lnx/x+∫▒〖1/x^2dx=-lnx/x-1/x^2+c〗〗2.f(x)的导数f'(x)=x(2lnx+1);令f'(x)=0,得x1=0

计算不定积分^∫(2,0)f(x)dx,其中f(x)=(x+1,x1

原积分=∫(1,0)(x+1)dx+∫(2,1)(1/2x^2)dx=(1/2*x^2+x)(1,0)+(1/6*x^3)(2,1)=(1/2+1/2)+(1/6*8-1/6*1)=13/6PS:这个

∫1/x(1+x^3)dx

上下乘以X^2再积分再问:具体点再答:x^2/(x^3(1+x^3))dx=1/3*(1/(x^3(1+x^3)))dx^3=1/3(1/(t(1+t)))dt=1/3(1/t-1/(1+t))dt=

d(y+x)/dx等不等于dy/dx+1?

d(y+x)/dx等不等于dy/dx+1?完全正确d(y+x)/dx=(dy+dx)/dx=dy/dx+dx/dx=dy/dx+1

∫1/(x^2+x+1)dx

∫1/(x²+x+1)dx=∫1/[(x+1/2)²+3/4]d(x+1/2)=(2/✔3)arctan[(2x+1)/✔3]+c公式∫1/(x

matlab求∫ f(x)dx在(0-2)的定积分,其中f(x)=x+1,x1.和不定∫ e^(ax)*sin(bx)d

sysxabf1=x+1;f2=0.5*x^2;int(f1,0,1)+int(f2,1,2)f=exp(ax)*sin(bx)inf(f)

∫arctan[(x-1)/(x+1)]dx

对复杂部分求导,然后分部积分法,具体看图!

解方程 x(dy/dx)^3=(1+dy/dx)

这种题,如果题目没错的话,真要很高的水平才能解

∫ (1,-1)xe^(x|x|)dx

∫(-1,1)xe^(x|x|)dx=∫(-1,0)xe^(-x^2)dx+∫(0,1)xe^x^2dx=-1/2∫(-1,0)e^(-x^2)d(-x^2)+1/2∫(0,1)e^x^2dx^2=1

∫dx/x(x2+1),

令x=tant则dx=sec^2tdt于是∫dx/[x(x^2+1)]=∫sec^2t/[tantsec^2t]dt=∫dt/tant=∫(cost/sint)dt=∫(1/sint)dsint=ln

积分dx/1-e^x

de^x=e^xdxdx/1-e^x=1/e^x-e^2xde^x=1/t-t^2dt(其中t=e^x)=(1/t+1/1-t)dt=d(lnt-ln1-t)固dx/1-e^x=d(lne^x-ln(

不定积分1/(根号x)*(1+x)dx

∫1/[√x(1+x)]=∫1/(2√x)]=1/2∫1/√x=1/2∫(2√x)/√xd√x=1/2∫2d√x=∫d√x=√x再问:为什么你和答案不一样..再答:答案是什么?我那个还可以化的,因为我

1/(1+cos x) dx

∫1/(1+cosx)dx=∫(1-cosx)/[1-(cosx)^2]dx=∫[1/(sinx)^2-cosx/(sinx)^2]dx=∫(cscx)^2dx-∫1/(sinx)^2d(sinx)=

∫x(1+lnx)dx

∫x(1+lnx)dx=∫(1+lnx)d(x²/2)=(1/2)x²(1+lnx)-(1/2)∫x²d(1+lnx)=x²/2+(1/2)x²lnx

∫(x+1)²dx

这两个是一样的上面一个常数是C下面一个是1/3+C考虑到C的任意性,本质是一样的关键是看含有x的项要一样