dx (x t-1)dt积分

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 18:24:32
dx (x t-1)dt积分
不定积分[d积分(x-t)f'(t)dt]/dx 积分上限x下限a

设那个积分为F(x)则F(x)=∫(a→x)(x-t)f'(t)dt=x∫(a→x)f'(t)dt-∫(a→x)tf'(t)dt原式=F'(x)=1*∫(a→x)f'(t)dt+x*f'(x)-xf'

求函数:t乘|x-t| 在[0,1]的定积分为y,求函数y.注:定积分表达式后面是dt,不是dx

y(x)=∫[0→1]t|x-t|dt1、当xty(x)=∫[0→1]t|x-t|dt=∫[0→1]t(x-t)dt=(1/2)x-(1/3)综上:f(x)=(1/3)-(1/2)xx1希望可以帮到你

求定积分d∫(x-t)f'(t)dt/dx 积分上限为x 积分下限为0

d∫(x-t)f'(t)dt/dx=d∫xf'(t)dt/dx-d∫tf'(t)dt/dx=d(x∫f'(t)dt)/dx-xf'(x)=∫f'(t)dt+xf'(x)-xf'(x)=∫f'(t)dt

求这个定积分 ∫(0-1)【x∫(1-x^2)e^(-t^2)dt】dx

这个需要更换积分次序的.再答:内层积分的上下限是否是x和1-x^2?再问:不是,上下限是1,x^2再问:怎么更换次序?e^(-t^2)积不出来啊再答:奥,结果很快就有再答:再问:还可以这样啊

d/dx定积分(0~x^2) (1+t^2)^(1/2)dt d/dx定积分(0~x^2)(x^1/2)cost^2dt

1、=2x(1+x^4)^(1/2)2、=d/dx(x^1/2)*∫(0~x^2)cost^2dt=(1/2)x^(-1/2)*∫(0~x^2)cost^2dt+(x^(1/2))*cos(x^4)*

求下列积分,积分符号(x/16)e^(xt-(x/4))dx.范围 0 到正无穷

∫[0,+无穷)(x/16)e^(-x/4)dx=∫[0,+无穷)(-x/4)de^(-x/4)=-∫[0,+无穷)e^(-x/4)d(-x/4)=-(0-1)=1∫[0,+无穷)(x/16)e^(x

求一积分题解题步骤∫(dt/√1-t^2)令t=cosx,dt=-sintdt=∫(-sinxdx/sinx)=-∫dx

∫和d抵消-∫dx=-x+c=-arccost+c因为aecsint+arccost=π/2所以-arccost+c=aecsint-π/2+c-π/2+c是常数,所以可以写在一起所以=arcsint

求x趋于0时lim(1/x)积分符号(上1下0)f(xt)dt

lim{x->0}(1/x)∫[0,1]f(xt)dt=∫[0,1]t*lim{xt->0}{f(xt)-f(0)}/(xt)dt=∫[0,1]t*f'(0)dt,注意:lim{xt->0}{f(xt

d/dx积分号(0~x^2)1/(1+t^2)dt=?

你这里面t与x有没有关系啊如果没有的话你看是对t积分,那么与x就没关系了原式=d/dx积分号(0~x^2)1/(1+t^2)dt=d/dx(-x^2*arctan(t))再进行计算就是-2*x*arc

高数定积分问题,为什么dx =t*dt?

因为x=(t^2-1)/2两端同时取微分,dx=d((t^2-1)/2)=d(t^2-1)/2=2t/2dt=tdt至于1/2只是为了算数方便而已,不提也可以的有不懂欢迎追问

d/dx ∫tf(t)dt 积分的导数

是变上限的积分求导吧!则(d∫(0,x)tf(t)dt/dx)'=xf(x)再问:那要是d/dx∫xf(t)dt积分的导数是把x当作常数么?再答:对啊!把x提出去,再用乘积求导即可.d/dx∫(0,x

求积分 ∫ [ 1 / (cost)^3 ]dt

∫1/cos³t dt=∫sec³t dt

已知:积分号上x下0(x-t)f(t)dt=1-cosx 证明:积分号上π(圆周率)下0 f(x)dx=1 .

∫因为:∫f(t)dt【t=0→x】=1-cosx所以:∫f(t)dt=C-cost因此:∫f(x)dx【x=0→π】=C-cosx【x=0→π】=(C-cosπ)-(C-cos0)=(C+1)-(C

证明:定积分(0~x)[定积分(0~t)f(x)dx]dt=定积分f(t)(x-t)dt

记g(x)=∫(0~x)[∫(0~t)f(x)dx]dt-∫(0~x)f(t)(x-t)dt即g(x)=∫(0~x)[∫(0~t)f(x)dx]dt-x∫(0~x)f(t)dt+∫(0~x)tf(t)

第二换元积分法dx怎么等于dt

泪流满面,居然看到了高数题.当x=t+C时,dx/dt=1,也就是dx=dt

d (定积分[cosx,1]e^(-t)^2)dt/dx

设F'(x)=e^(-x)^2(定积分[cosx,1]e^(-t)^2)dt=F(1)-F(cosx)d(定积分[cosx,1]e^(-t)^2)dt/dx=[F(1)-F(cosx)]'=F'(1)