dx dy=e^x-y
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 17:19:38
因是x^2+y^2≤1,z=0的下侧,∫∫E(x^2+y^2)dxdy=-∫∫D(x^2+y^2)dxdy,其中D:x^2+y^2≤1,用极坐标得:∫∫E(x^2+y^2)dxdy=-∫∫D(x^2+
这题要用到二重积分的换元法……设x-y=u,x+y=v,得x=(v+u)/2,y=(v-u)/2,则在此变换下,积分区域边界曲线化为了v=1,u=2v,u=-v,新的积分区域为D'={(u,v)|0≤
T1<T2首先T1=∫∫(x+y)^2dxdyT2=∫∫(x+y)^3dxdy.这两个相除(x+y).你仔细想一下,如果(x+y)始终>=1,或者始终<=1,那么就好判断了.因此现在问题就看在D范围内
用y=x^2分区域为上下两部分D1和D2,原积分=∫∫D1(y-x^2)dxdy+∫∫D2(x^2-y)dxdy=∫(-1,1)dx∫(x^2,2)(y-x^2)dy+∫(-1,1)dx∫(0,x^2
哪有E(X1,X2)这种东西啊,人家要你求的是E(X1X2),X1与X2是相乘的,用xyf(x,y)做积分就可以.再问:哦哦,
补一个面(构成封闭曲面),用高斯公式:补面∑1:z=h取上侧(构成封闭圆锥面的外侧)x²+y²≤h²原积分=∫∫(y^2-z)dydz+(z^2-x)dzdx+(x^2-
我来回答吧:1),因为D是矩形区域,0
∫∫cos(x+y)dxdy∫dx∫cos(x+y)dy,x的上下限是π和0,y的上下限是π和0∫dx∫dsin(x+y)=∫[sin(π+x)-sinx]dx=∫-2sinxdx=2∫dcosx,x
∫∫e^(x+y)dxdy=∫[0,1]dx∫[0,1-x]e^x*e^ydy=∫[0,1]e^xdx∫[0,1-x]e^ydy=∫[0,1]e^xdx(e^y|[0,1-x])=∫[0,1]e^x(
因为这题重点根本就不是求这个积分,而是求极限例如这是根据我以前做过的题目而推断的.若只是求这个积分的话,原函数不能用初等函数表示出.
极坐标转换:∫∫e^(x²+y²)dxdyD=∫(0,π)∫(0,2)re^(r²)drdθ=(1/2)[θ]|(0,π)[e^(r²)]|(0,2)=(π/2
“其中D由直线y=x,y=x与y轴围成”有错!再问:其中D由直线y=x,y=1与y轴围成求帮忙看下这题到底怎么做。。再答:二重积分I=∫∫(D)x^2*e^(-y^2)dxdy=∫e^(-y²
先对x积分在对y积分∫∫e^(-y^2)dxdy=∫(0,1)[∫(0,y)e^(-y^2)dx]dy=∫(0,1)ye^(-y^2)dy=-1/2∫(0,1)e^(-y^2)d(-y^2)=-e(-
换元法x=rcosax^2+y^2≤1所以0
∫∫e^(x+y)dxdy=∫[∫e^(x+y)dx]dy∫e^(x+y)dx(0~1)↑↑=e^(x+y)|0~10~10~1=e^(1+y)-e^y=(e-1)e^y=∫(e-1)e^ydy(0~
楼上兄的回答思路是正确的,只不过修正一下小错误symsxyf=sin(x^2*y)*exp(-x-y);ddf=diff(diff(f,x),y);simple(ddf)
∫∫(e^(y/x)dxdy=∫[0,1/2]dx∫[x^2,x](e^(y/x)dy=∫[0,1/2]dx{(xe^(y/x)|[x^2,x]}=∫[0,1/2](xe-xe^x)dx=ex^2/2