dx e^x e^-x的积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 03:22:03
设u=x,dv=e^xdx那么,du=dx,v=e^x.于是,∫xe^x=xe^x-∫e^xdx=xe^x-e^x+C=e^x(x-1)+C这是标准的分部积分法的应用.你的系数是怎么加的,没写清楚啊!
∫xlnxdx(1→e)=½∫lnxdx²(1→e)=½x²lnx(1→e)-½∫x²dlnx(1→e)=½e&s
∫[0,1]xe^(2x)dx=[(1/2)xe^(2x)-(1/4)e^(2x)][0,1]=[e²/2-e²/4]-[-1/4]=(e²/4)+1/4=(e²
∫xe^xdx=∫xde^x=x*e^x-∫e^xdx=x*e^x-e^x+C=(x-1)*e^x+C所以定积分=(π/2-1)*e^(π/2)-(-1)*e^0=(π/2-1)*e^(π/2)+1
用分部积分法:∫xe^-xdx=-∫xd(e^-x)=-xe^-x+∫(e^-x)d(x)=-xe^-x-e^-x
∫xe的x次方dx的积分=∫xde^x=xe^x-∫e^xdx=xe^x-e^x+c再问:^是个什么意思啊再答:e^x即为e的x次方
用分部积分法积分号xe(-x)dx=-xe^(-x)-积分号[-e^(-x)]dx=-xe^(-x)-e^(-x)+c=-e^(-x)(x+1)+c
∫0~√(ln2)x×e^(x^2)dx=1/2×∫0~√(ln2)2x×e^(x^2)dx=1/2×∫0~√(ln2)e^(x^2)d(x^2)令t=x^2=1/2×∫0~(ln2)e^tdt=1/
f(x)=(x-a)/2*e^[(x-a)/2]/b所以原式=∫(t-a)/2*e^[(t-a)/2]/bdt=(2/b)∫(t-a)/2*e^[(t-a)/2]d[(t-a)/2]=(2/b)∫(t
分部积分法∫(0~1)xe^x/(1+x)^2dx=-∫(0~1)xe^xd[1/(1+x)]=-e/2+∫(0~1)[1/(1+x)×(x+1)e^x]dx=-e/2+∫(0~1)e^xdx=-e/
∫xe^x^2dx=1/2∫e^x^2dx^2=1/2e^(x^2)+c
∫(2→4)xe^(-x²)dx=∫(2→4)e^(-x²)d(x²/2)、凑微分=(1/2)∫(2→4)e^(-x²)d(x²)、把常数项提出=(1
∫(0→1)xe^(-x)dx=-∫(0→1)xd[e^(-x)]=-[xe^(-x)]+∫(0→1)e^(-x)dx=-1/e-[e^(-x)]=-1/e-(1/e-1)=1-2/e
∫xe^(x^2)dx=(1/2)∫e^(x^2)d(x^2)=(1/2)e^(x^2)+C(C为常数)代入上下限,可知原积分=(e-1)/2
貌似你会得不到初等函数解.
这个是广义积分∫xe^(-x^2)dx在(0,+∞)的定积分不妨取a→+∞∫xe^(-x^2)dx在(0,a)的定积分=-1/2e^(-x^2)](0,a)所以所求是lim(a→+∞)[-1/2e^(