dy dx-2xy=e^x^2的通解

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 11:01:16
dy dx-2xy=e^x^2的通解
求由方程xy=ex+y所确定的隐函数的导数dydx

方程两边求关x的导数ddx(xy)=(y+xdydx);     ddxex+y=ex+y(1+dydx);所以有  (y+xdy

已知x-xy=8,xy-y=-9,求x+y-2xy的值

x-xy=8(1)xy-y=-9(2)则有(1)-(2):X-XY-XY+Y=X+Y-2XY=8-(-9)=17

若xy独立 证明的D(xy)=D(X)D(Y)+(E(x))^2D(Y)+E((Y))^2D(x)

DX=EX^2-(EX)^2DY=EY^2-(EY)^2EXY=EXEYDXY=E(XY)^2-(EXY)^2=(EX^2)(EY^2)-(EXY)(EXY)=DXDY+EX^2(EY)^2+(EX)

z=f(x,y)是方程e^(-xy)-2z+e^z给出的函数,求全微分dz

e^(-xy)-2z+e^z=0-ye^(-xy)-2z'(x)+e^zz'(x)=0z'(x)=ye^(-xy)/(e^z-2)-xe^(-xy)-2z'(y)+e^zz'(y)=0z'(y)=xe

已知e^y+e^x-xy^2=0,求dy/dx

y'e^y+e^x-y²-2xyy'=0y'=(e^x-y²)/(2xy-e^y)即:dy/dx=(e^x-y²)/(2xy-e^y)祝你开心!希望能帮到你,如果不懂,请

高数:x→0,y→2lim[ln(x+e^xy)/x]=?

运用函数连续性,化成一元函数求极限x→0,y→2lim[ln(x+e^xy)/x]=x→0lim[ln(x+e^(2x)]/x【0/0型】=x→0lim[ln(1+(x+e^(2x)-1)]/x=x→

设函数z=e的x次方(x平方+2xy),求梯度 grad f(x,y).

你想说这个问题?z=e^(x^2+2xy)应该是y=e^(x^2+2xy)(2x+2y)i+e^(x^2+2xy)2xj

siny+e^x-xy^2=0,求dy/dx

siny+e^x=xy^2,两边求微分,cosydy+e^xdx=d(xy^2)cosydy+e^xdx=y^2dx+2xydy整理,得(e^x-y^2)dx=(2xy-cosy)dydy/dx=(e

求隐函数siny+e的x次方-xy的2次方=0的导数

隐函数求导,就是先左右一起求微分,加个d,然后写出多少dx+多少dy=0,移项变成dy/dx=多少的形式就好了

求微分方程dydx+y=e

这是一阶线性微分方程,其中P(x)=1,Q(x)=e-x∴通解y=e−∫dx(∫e−x•e∫dxdx+C)=e−x(∫e−x•exdx+C)=e−x(x+C).

求隐函数的偏导数siny+e^x-xy^2=0,求dy/dx

解两边求导y‘cosy+e^x-y^2-2xyy'=0即y’(cosy-2xy)=y^2-e^xy'=(y^2-e^x)/(cosy-2xy)或者F(x,y)=siny+e^x-xy^2=0Fx=e^

微分方程dy/dx-2xy=e^x^2cosx的通解

直接使用通解公式:y=e^(x^2)(C+亅cosxdx)=e^(x^2)(C+sinx)再问:谢谢您的解答,但通解公式太复杂,有没有另一种方法。

matlab solve函数 xmaxr=solve(dydx,x)

dydx要是等式才行吧.如果是的话,这句话就是求这个等式的根,用r表示x.

隐函数求导问题e^(xy)=x+y+e-2 做这道题“两边关于x求导”是什么意思?e^(xy)(xy)'=1+y'e^(

就是方程两边的每一项都对x进行求导,这里要将y看成是复合函数,y=y(x)比如x对x求导,则为1对y求导,则为y'对xy求导,应用求导运算法则,为y+xy'

求微分方程xy'-2x²y=x³e^(x²)的通解

y'-2xy=x^2e^(x^2)[ye^(-x^2)]'=x^2ye^(-x^2)=(1/3)*x^3+C再问:有其他解法吗?看不懂再答:这么解最简单a,等式两侧同除以xe^(x^2)y'e^(-x

求道高数题的答案 求微分方程1/2y'+xy=e^(-x^2)的通解

一阶线性微分方程dy/dx+P(x)y=Q(x)通解y=e^-∫P(x)dx{∫Q(x)[e^∫P(x)dx]dx+C}代进去就可以了y=e^-∫2xdx{2e^(-x^2)[e^∫2xdx]dx+C

设函数y=y(x)由方程ex+y+cos(xy)=0确定,则dydx

在方程ex+y+cos(xy)=0左右两边同时对x求导,得:ex+y(1+y′)-sin(xy)•(y+xy′)=0,化简求得:y′=dydx=ysin(xy)−ex+yex+y−xsin(xy).