根号2x-1泰勒展开式

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 08:58:01
根号2x-1泰勒展开式
已知(1/(3根号下x)+x根号x)^2展开式的各项系数和等于256,求展开式中系数最大项的表达式.

标准答案为70x^14/3因为各项系数和等于256,所以当x为1的时候,2^n=256则n=8,T5=C下8上4x^(-4/3)x^6=70x^14/3

求函数f(x)=ln(1-x)在x.=1/2处的泰勒展开式

直接在点处求n阶导数代入就行了

ln(1+X)的泰勒公式展开式为什么分母无阶乘符号

正好分子中导数值和分母的阶乘约了啊.lz写出前几项归纳下看看.

已知(x + (1/ 三次根号x))^n 展开式的二项式系数之和比(a +b )^2n展开式的二次项系数之和小240.求

(1)(√x+(1/³√x))ⁿ展开式的二项式系数之和为2ⁿ(a+b)²ⁿ展开式的二次项系数之和为2²ⁿ∴2²&

二项式{2根号x+1/开四次方x}(n属于N)的展开式中,前三项的系数依次成等差数列,则展开式的有理项是

T(r+1)=Cnr(2^n-r)*[x^(n-r)/2]*[x^(-r/4)]=Cnr(2^n-r)*[x^(2n-3r)]前三项的系数为:Cn0*(2^n),Cn1*(2^n-1),Cn2*(2^

在二项式(3根号x-1/(2*3根号x))^n的展开式中,前三项的系数的绝对值成等差数列 1、求展开式的第四项

展开式前三项系数分别为:Cn0,Cn1*(-1/2),Cn2*1/4化简:1,-n/2,n(n-1)/8绝对值成等差数列,即:1+n(n-1)/8=-n解得n=1(舍去)或8第四项为Cn3(x)^(5

已知(根号x+1/2四次根号x)∧n的展开式中,前三项系数成等差数列

{√x+1/[2x^(1/4)]}^n的展开式中,T=C(n,r)(√x)^(n-r)*[(1/2)x^(-1/4)]^r=C(n,r)*(1/2)^r*x^(n/2-3r/4),(1)前三项系数成等

如果在(根号X+1/(2四此根号X))^N的展开式中 前三项成等差数列

(x)^(1/4)=y原式=(y^2+1/2y)^n展开式的前三项:y^(2n)+ny^(2n-2)(1/2y)+n(n-1)y(^2n-4)(1/2^2y^2)系数分别是:1,n/2,n(n-1)/

】 在二项式【3次根号x-1/2(3次根号x)】的展开式中,前三项系数的绝对值...

前三项系数分别为1,-(1/2)×C(n,1),(1/4)×C(n,2)它们的绝对值为1,n/2,n(n-1)/8由条件,得1+n(n-1)/8=n,整理得n²-9n+8=0解得n=8或n=

二项式(x+1/2根号x)^n展开式前三项的系数成等差数列,n=

T1=C(n,0)*x^n*(1/2√x)^0系数是C(n,0)*(1/2)^0=1T2系数是C(n,1)*(1/2)^1=n/2T3系数是C(n,2)*(1/2)^2=n(n-1)/8前三项的系数成

二项式(2根号x-1/根号x)六次方的展开式中,常数项多少

(2x^(1/2)-x^(-1/2))^6通项:C(6,n)[2x^0.5]^n*[-x^(-0.5)]^(6-n)=2^n*(-1)^(6-n)*C(6,n)x^(0.5n)*x^(0.5n-3)=

两个函数的泰勒展开式求函数f(x)=(x+2)^(1/2)在x=2的泰勒展开.求函数f(x)=cos(2x)在x=pi的

令t=x-2,则x=t+2,f(x)=(t+4)^(1/2),展开成关于t的式子即可f(x)=2(1+t/4)^(1/2)因为(1+x)^μ=1+μx+(μ(μ-1)/2!)x^2+(μ(μ-1)(μ

已知(X+1/X)的N次方展开式的系数之和比(Y+根号Y)的2N次方展开式的系数之和小于56,求:

(2^2n)-2^n=56,解得:2^n=8,n=3(1):C(3,2)X.(1/X)^2=3/X(2):C(6,3)Y^3(根号Y)^3=20Y^(9/2)

(3次根号下X+X^2)^2n的展开式二项式系数和比(3X-1)^n展开式

2^2n-2^n=992(2^n+31)(2^n-32)=02^n=32n=5(2X-1/X)^10的展开式中,二项式系数最大的项为第6项C(10,5)(2X)^5(-1/X)^5

(根号x- (1/x^2) )^n 展开式中第五项与第三项的二项式系数之比为14:3 ,求展开式的常数项

第五项与第三项的二项式系数之比为14:3即C(n,4):C(n,2)=14:3∴3*C(n,4)=14*C(n,2)∴3*n(n-1)(n-2)(n-3)/(4*3*2*1)=14n(n-1)/(2*

请教1+√x泰勒展开式

泰勒展开式一般形式:f(x)=f(x0)+f(x0)'(x-x0)+[f(x0)''/2!](x-x0)^2+···+[f(x0)^(n)/n!]*(x-x0)^n+Rn(x)Rn(x)=[f(sx)

(1+2根号x)^3*(1-三次根号x)^5 的展开式中x的系数为?

这是考察二项式定理的应用第一个括号内有x,第二个括号内有x即可C3r(2根号x)^r和C5r(-三次根号x)^r即是所求第一个当r=2时,求x的系数第二个当x=3时,求x的系数12x-10x=2x所以

(1+2根号x)^3*(1—三次根号x)^5 的展开式中x的系数是多少?

(1+2√x)^3=1+6√x+12x+8√x³(1+³√x)^5=1-5³√x+10³√x²-10x+5³√x^4-³√x^5比