根号x(x-3)dx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 06:21:54
【复制参考文件】
设t=x开6次方x=t^6dx=6t^5dt∫dx/[(根号x)+x开3次方]=∫6t^5dt/(t^3+t^2)=6∫t^3dt/(t+1)=6∫(t^3+1)dt/(t+1)-6∫dt/(t+1)
用换元法,设sqrt(2+3x)=t,从而可得x=(t^2-2)/3,然后将x代入原式对t进行积分,最后再换回x就行了.具体过程不好打,你自己试一试吧,不难的.
原式=∫根号(4-(x+1)²)dx,只要令x+1=2cost,则x=2cost-1,dx=-2sintdt,故原积分式就化成∫(2sint)*(-2sint)dt,这样就容易积分了,最后把
∫[3^(1/x)/x²]dx=-∫3^tdt……t=1/x=-(3^t)/ln3+C=-[3^(1/x)]/ln3+C;∫√x/(√x-1)dx=∫[1+1/(√x-1)]dx=x+∫2√
令2-3x^2=t^2,得-6xdx=2tdt,也即xdx=-1/3*tdt∫x/根号(2-3x平方)dx=∫(-1/3)*tdt/t=-1/3*t+c=-√(2-3x^2)/3+c
根号下(sinx-(sinx)^3)dx=根号下(sinx[1-(sinx)^2])dx=根号下(sinx*cos^2x)dx=根号下(sinx)*cosxdx=根号下(sinx)*dsinx=2/3
∫√[1+√x]/x^[3/4]dxLetu=x,dx=4udu=∫√[1+u]/u*[4u]du=4∫√[1+u]duLetu=tanz,du=seczdz=4∫√[1+tanz][seczdz]=
(x^2)/2-18x^(1/2)+3x+C0.5*x^2+2*x^(1/2)+C9x-2x^3+0.2*x^5+C
∫1/[1+(√3x)]dx=1/√3·∫1/[1+(√3x)]d(√3x)=1/√3·∫1/[1+(√3x)]d(1+√3x)=1/√3·ln|1+√3x|+C
令a=3次根号(1-x)x=1-a³dx=-3a²da原式=∫(1-a³)/a*(-3a²da)=-3∫(a-a^4)da=-3(a²/2-a^5/5
dx^(1/2)=(1/2)x^(-1/2)dx∫x^(-1/2)lnxdx=2∫lnxdx^(1/2)
☆⌒_⌒☆答案在这里,很简单而已.
设x=t的6次方∴t=6次根号下t∫1/(t³+t²)dt的6次方=∫6t的5次方/t²(t+1)dt=∫6t³/(t+1)dt=6∫(t³+1-1)
1.∫_(-1)^(2)1/(11+5x)³dx=(1/5)∫_(-1)^(2)1/(11+5x)³d(5x)=(1/5)∫_(-1)^(2)(11+5x)^(-3)d(11+5x
分步积分法原式=xarctan√x-∫xdarctan√x=xarctan√x-∫x/(1+x)dx=xarctan√x-∫(x+1-1)/(1+x)dx=xarctan√x-∫[1-1/(1+x)]