根号下(1 sinx^2的积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 01:02:37
求不定积分∫√(1+x²)dx令x=tanu,则dx=sec²udu,于是原式=∫sec³udu=∫secud(tanu)=secutanu-∫tanud(secu)=s
做变量代换t=x^2dt=2xdx=2√tdx定积分(0到根号下2π)sinx^2dx=定积分(0到2π)(sint)/(2√t)dt=定积分(0到π)(sint)/(2√t)dt+定积分(π到2π)
再答:题目有问题,不会了再问:确实做不出,谢谢了
∫根号(1+1/x^2)dx=∫根号(x^2+1)/xdx令t=根号(x^2+1)x=根号(t^2-1)dx=t/根号(t^2-1)dt=∫t/根号(t^2-1)*t/根号(t^2-1)dt=∫t^2
∫(x+2)dx/√(x+1)=∫(x+1+1)dx/√(x+1)=∫√(x+1)dx+∫dx/√(x+1)=(2/3)(x+1)^(3/2)+2√(x+1)+C再问:=∫(x+1+1)dx/√(x+
1+cos2x=(cosx)^2根号下1+cos2x=cosx故原积分变成sinxcosxdx=sinxd(sinx)=1/2*(sinx)^2或者=-cosxd(cosx)=-1/2*(cosx)^
ln(x+根号(x的平方-1))+C再答:课本上的公式再问:那是1/根号下x2-1的公式再答:嘿嘿,看错题了!下面的答案应该可以让你满意
[0,π/2]∫(sinx-cosx)/(sinx+cosx)^(1/3)dx=[0,π/2]∫-d(sinx+cosx)/(sinx+cosx)^(1/3)=[0,π/2]∫-d(sinx+cosx
既要换元,又要分部,还涉循环积分.初学者有难度.
原式=∫1/(1-x)(1+x)dx=1/2∫[1/(1-x)+1/(1+x)]dx=1/2[-ln|1-x|+ln|1+x|]+c=1/2ln|(1+x)/(1-x)|+c啊,原来有根号啊应该是ar
1+sinx=(sin(x/2)+cos(x/2))^2即原式=∫(sin(x/2)+cos(x/2))dx=2∫sin(x/2)d(x/2)+2∫cos(x/2)d(x/2)=2sin(x/2)-2
cosx=1/2(√(1+sinx)-√(1-sinx))是的.两边平方是扩大了方程的根的取值范围,所以你求出来之后的x也是扩大了的.最后得将其带入到原来的方程里面去验证的,比如上面的:平方后cos^
=∫sinxdarcsinx=sinxarcsinx-∫cosxarcsinxdx=sinxarcsinx+∫sinx/√(1+x*x)dx所以你确定你没出错题?再问:我高数卷上的一道题啊!考试来的!
设根号下((1+sinX)除以(1-sinX))-根号下((1-sinX)除以(1+sinX))=y,则y的平方=……=4(tanx)^2所以y=±2tanx再问:完全平方后如何化简再答:通分,利用正
y=2乘根号下sinx+C(常数)再问:呃我验算了一下好像错了再答:呀~错了,没有算sinx的积分,此函数没有精确积分。给你一个数值(F,第一类椭圆积分.。常数项省略。)
y=(cosx/|cosx|)+(2sinx/|sinx|)当x∈(2kπ,2kπ+π/2)时,(k∈Z)y=3当x∈(2kπ+π/2,2kπ+π)时,y=-1+2=1当x∈(2kπ+π,2kπ+3π
根号下(1-sinx平方)=|cosx|原式=∫(0,π/2)cosxdx+∫(π/2,π)-cosxdx=sinx|(0,π/2)-sinx|(π/2,π)=1+1=2再问:根号下(1-sinx平方