根号下1加x的等价无穷小

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 07:55:55
根号下1加x的等价无穷小
求当x趋于正无穷时,x乘[根号下(x平方+1)-x]的极限.可以用等价无穷小算吗?

limx*[根号(x^2+1)-x]=limx*[根号(x^2+1)-x][根号(x^2+1)+x]/[根号(x^2+1)+x]=limx/[根号(x^2+1)+x]=lim1/[根号(x^2+1)+

{根号下(1+根号下(x+根号x))}-1 x趋向于0,与mx^n是等价无穷小,求m n

 我第二行写错了,根号x改成x的1/4次,反正就是这种方法,分子或分母有理化降次,再用运算法则

根号1+x减去根号1-x的等价无穷小是什么,具体过程请写下.

x-->0则√(1+x)-√(1-x)=2x/【√(1+x)+√(1-x)】=x再问:我想知道=2x/【√(1+x)+√(1-x)】=x这一步怎么直接得到x的?再答:lim【√(1+x)+√(1-x)

x→0时,x+[根号下(1+x^2)]-1的等价无穷小为什么为x

x→0时,令y=x+[√(1+x²)-1]则lim(x→0)[y/x]=lim(x→0)[x+[√(1+x²)-1]]/x=lim(x→0)[1+[√(1+x²)-1]/

根号(1+tanx)-根号(1-sinx)在x趋向于0时的等价无穷小?

lim[√(1+tanx)-√(1-sinx)]/x^k=常数,下面求k分子有理化=lim[√(1+tanx)-√(1-sinx)][√(1+tanx)+√(1-sinx)]/(x^k[√(1+tan

当x趋近于0时,证明根号下1+X的正切减根号下1+X的正弦的差的等价无穷小为x的3次方的四分之一

√(1+tanx)-√(1+sinx)=(tanx-sinx)/[√(1+tanx)+√(1+sinx)]分母的极限是2,分子tanx-sinx=tanx(1-cosx),x→0时,tanx等价于x,

lim(x-0+)sinax/根号下1-cosx,利用等价无穷小求极限

sinax~ax,√(1-cosx)=√2sinx/2~√2x/2,——》原式=limx→0+=ax/(√2x/2)=√2*a.再问:根号下1-cosx=根号下2sinx^2x吗再答:1-cosx=2

微积分 等价无穷小的代换 当X趋近于0时,(1+X平方) —1 根号下(1+X)再减一 趋近于 多少?

第一个应该是(1+x)^2-1吧?当X趋近于0时,(1+x)^a-1~ax,第一个为2x,第二个为x/2.

用等价无穷小的替换求极限lim [2sin(三次根号下x)-x]/三次根号下x+2x-x^2

我想问你两个问题:1.x是趋向无穷小还是趋向无穷大?2.是题目规定要用等价无穷小去做吗?由于在和式中,应该用不到等价无穷小来解,个人认为应该可以用泰勒公式去进行展开来解.不过由于条件不清楚,我暂时还没

当x→0时,根号下(1+x)-根号下(1-x)的等价无穷小的是什么?步骤易于理解一点,我真的不懂

这个问题不需要用等价无穷小做呀x→0的时候√(1+x)和√(1-x)都有极限=1整体极限是0的没有太明白你要问什么等价无穷小就是求极限问题的一个工具简便计算再问:再问:如图14题,怎么得出x的?再答:

x趋于0时,根号x与根号x的正弦是等价无穷小吗?

是等价无穷小,证明请看图片.

求极限 x趋于0^+ lim sin3x/根号下(1-cosx) 利用等价无穷小的性质 求

利用等价交换性质,当x趋近于0时,sin3x就等价于3x,分母就等价于根号下(1/2)*x^2,所以此极限为3倍根号2

ln(1-x)的等价无穷小

是-x,sin(-x),tan(-x)之类的因为ln(1+x)的等价无穷小是x;sinx;tanx;e^x-1又ln(1-x)=ln[1+(-x)]所以得如上结论

根号下1加x平方然后减1 的等价无穷小量 x趋于零

√(1+x²)-1=[√(1+x²)-1][√(1+x²)+1]/[√(1+x²)+1]=x²/[√(1+x²)+1]x→0则2/[√(1+

x-sinx的等价无穷小?

错在(2-2sin(x/2)*cos(x/2)/(x/2))=2(2-2cos(x/2))这一步你默认了sinθ/θ=1,实际上本题就是要求出sinθ的更高阶无穷小量,这样忽略“过头”了.事实是,si

lim(x->0)[ 根号下(1+x+x^2) -1] 的等价无穷小为什么是x/2

lim(x->0)[√(1+x+x^2)-1]/(x/2)(这是0/0型,运用洛必达法则得=lim(x->0)[(1+2x)/√(1+x+x^2)=1所以[√(1+x+x^2)-1]x/2(x→0)再

ln(1+x平方)的等价无穷小

x→0ln(1+x^2)~x^2再问:呜呜,,能不能写详细点,过程呢?拜托了,,再答:lim(x→0)ln(1+x^2)/x^2(0/0,用洛必达法则)=lim(x→0)[2x/(1+x^2)]/(2