d^2y dx^2参数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 01:19:34
e(-xy)d(-xy)=(xdy+ydx)d(exy^2/2)=d(xy)exy^2=2xy+C,C为任意常数,或x恒等于0,或y恒等于0,或x和y都为常数不知道有没有错呢···
dy/y=dx/x积分:ln|y|=ln|x|+C1即y=cx代入y(1)=2=c故y=x再问:请问你的答案是否正确?另外能不能帮忙把我的这个问题也解决了?求函数z=x³+y³-x
我说说我的思路,但不一定对.1.这个方程很复杂.观察由方程的左边同时出现了dy/dx,dx/dy,并等式右边是一个常数.为了保证等式左边两项的平方和等于一个常数,则等式左边两项必定每一项都为一个常数.
y=f(x)d²/dx²=d(f'(x))/dx=f''(x)所谓二阶导数,即原函数导数的导数,将原函数进行二次求导.不是dy/dx再导一遍,然后除以dx是dy/dx再导一遍
d(xy)可以理解为xy的一个微小变化量.当x变化微小量dx成为x+dx,y变化微小量dy成为y+dy,所以对应xy(初值)就变化成(x+dx)(y+dy)(末值),变化量即为末值减初值.再问:三年前
不够明白,是这样吗:
一阶导数y'=dy/dx二阶导数y"=dy'/dx=d(dy/dx)/dx=d^2y/dx^2这里有分子有两个d,一个y,所以写成d^2y,这是一种习惯.写成(dy/dx)^2不对,这样就成了y"=(
你做的正确,难道书上的答案错了?还是你的题抄错了?参数法计算如下∫ydx+xdy=∫[0→π/2](-R²sin²t+R²cos²t)dt=R²∫[0
e^ydx+(xe^y+2y)dy=d(xe^y)+d(y^2)=0------全微分积分可得xe^y+y^2=0
ydx-xdy=(x²+y²)dxy-x•dy/dx=x²+y²y'=y/x-y²/x-x(令y=-xv,y'=-(xv'+v)=-xv'
观察方程组,发现可用降阶法,求出dx、dy、dz,再积分,求出x、y、z.clc;clear;n=3034,b=0.4,e=57,w=25[dx,dy,dz]=dsolve('Dx=n*b*(-sin
x^2ydx-(x^3+y^3)dy=0变形:dx/dy=x/y+(y/x)^2设x/y=u,x=yudx/dy=u+ydu/dyu+ydu/dy=u+(1/u)^2ydu/dy=(1/u)^2u^2
由于不是单连通区域,因此不能说积分与路径无关,对于任意的两条路径,要看原点是否在这两条路径所围区域内,如果原点不在其内,则与路径无关;如果原点在这个区域内,积分与路径是有关的.你所说的x²+
没错,就是利用了复合函数求导的乘法原理:(AB)'=A'B+AB'd(xy)/dx=ydx/dx+xdy/dx=y+xy'
2ydx+(y^3-x)dy=0dx/dy-(1/2y)x=-y^2/2,这是一阶线性方程,由通解公式:e^∫(1/2y)dy=√yx=√y(C+∫[(-y^2/2)/√y]dy)=√y(C-(1/5
定义:形如y'+P(x)y=Q(x)的微分方程称为一阶线性微分方程,Q(x)称为自由项.(这里所谓的一阶,指的是方程中关于Y的导数是一阶导数.)∵ydx+(x-lny)dy=0==>ydx/dy+x=
ydx-xdy+(y^2)xdx=0y-xdy/dx=-(y^2)x(y-xy')/y^2=-x(x/y)'=-x两边积分得x/y=-x^2/2+C
因为P=-x^2y,Q=xy^2.所以Py=-x^2,Qx=y^2.利用格林公式:∮cP(x,y)dx+Q(x,y)dy=∫∫D(dQ/dx-dP/dy)dxdy,其中c是的取正向的边界曲线.故原式=
满足格林公式如果PQ相等是与积分路径无关只要L闭封,P.Q在D中有一阶连续偏导数,且D的边界取正方向就可以用格林公式