根号下x2-1 的原函数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 09:47:35
用定义,设x1>x2,然后作差,分子分母同时×(x1的函数值加x2的函数值)后面应该就好做了:-)
ln(x+根号(x的平方-1))+C再答:课本上的公式再问:那是1/根号下x2-1的公式再答:嘿嘿,看错题了!下面的答案应该可以让你满意
因为x²≥0,所以x²+4≥4,所以根号(x²+4)≥2,所以0<1/根号下(x2+4)≤1/2,所以函数值域y=1/根号下(x2+4)为(0,1/2]
由题意可得:∫(1/√x)dx=∫x^(-1/2)dx=2√x+C(C为常数)所以1/根号下x的原函数为2√x+C(C为常数)
定义域是R把根号下1+x2的绝对值大于X的绝对值同时根号下1+x2肯定是正的所以ln后面的肯定大于0再问:x+根号下1+x2>0怎么解再答:把x移到右面去两边平方消去x2得到1>0所以解集是R~
F(x)=∫ydx=∫√(1-x^2)dx令x=sint,则√(1-x^2)=cost,dx=costdt,从而∫√(1-x^2)dx=∫cost^2dt=∫[(1+cos2t)/2]dt=∫(1/2
y=√(9-x²)/√sinx令9-x²≥0,sinx>0得-3≤x≤3,2kπ<x<2kπ+π,k∈Z所以0<x≤3所以函数y=√(9-x²)/√sinx的定义域是(0
1/2*x√(1-x^2)+1/2*arcsinx+Cf(x)=∫√(1-x^2)dx令x=sint,则sin2t=2x√(1-x^2)t=arcsinxf(x)=∫costdsint=∫(cost)
底数大于0小于1所以2/1^x时减函数所以就是指数的减区间-x²+x+2对称轴x=1/2,开口向下所以x>1/2递减定义域-x²+x+2>=0x²-x-2=(x-2)(x
y=(x^2+2)/√(x^2+1)=√(x^2+1)+1/√(x^2+1)√(x^2+1)>0y=√(x^2+1)+1/√(x^2+1)>=2√(x^2+1)*[1/√(x^2+1)]x=0y最小值
写错了吧,应该还有一个x的.0到无穷大.再问:给个过程行不?再答:x2+2x+1=(x+1)²,当x=-1时,它是有最小值为0,其他时候都是>0的,故根号x2+2x+1的值域是0到正无穷大。
所以所求原函数是:ln | x + √(x^2 + 1) | + C
f(-x)+f(x)=log[√(1+x²)-x]+log[√(1+x²)+x]=log{[√(1+x²)-x][√(1+x²)+x]}=log(1+x
积分就行了原函数是:1/2倍x乘以根号下1-x的平方+1/2倍arcsinx+c(c为任意常数)
y=(x^2+2)/√(x^2+1)=√(x^2+1)+1/√(x^2+1)√(x^2+1)>0y=√(x^2+1)+1/√(x^2+1)>=2√(x^2+1)*[1/√(x^2+1)]x=0y最小值
令x=tan(t),t∈(-pi/2,pi/2),则根号(1+x^2)=sec(t),∫根号(1+x^2)dx=∫sec(t)d(tan(t))-----(令此积分为I)=tan(t)sec(t)-∫
设x=tanb,则原题=ln(tanb+secb)dtanb=tanbln(tanb+secb)-tanbdln(tanb+secb)tanbdln(tanb+secb)=(tanb)*((secb)
负无穷到正无穷