D是对角矩阵,A>0,AD>0的充要条件是D>

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 23:22:04
D是对角矩阵,A>0,AD>0的充要条件是D>
设A是n*n矩阵,已知对角线上的aii>0(对角线上的元素大于零)其余的元素都小于零,

显然等于n是不可能的了.然后证明比如前n-1列是线性无关的.第n列就写作A_n假设存在一组不全为0的系数b_1b_2...b_{n-1}使得b_1A_1+b_2A_2+...+b_{n-1}A_{n-

设A是n阶非0矩阵,如果存在一正整数k使得A^k=0,证明A不可能相似于对角矩阵.

假设A相似于对角矩阵Λ,则由相似的定义有A=P^(-1)ΛP,P可逆所以A^k=(P^(-1)ΛP)^k=P^(-1)Λ^k*P=O所以Λ^k=O即Λ=O从而A=P^(-1)ΛP=O与A是n阶非0矩阵

求可逆矩阵P及对角矩阵D,使P-1AP=D:A 第一行3,1,0第二行0,3,1,第三行0 0 3

因为A=310031003故A是3阶的若当阵,A不可能对角化.因此找不到这样的可逆矩阵P和对角矩阵D,使得P^-1AP=D.

两个关于矩阵的问题如果一个实矩阵满足对角元大于0,其余元均小于0,且每一行和为0,求其秩A和B是实矩阵,且存在C和D,使

1.设该矩阵为M,n行n列.由于该矩阵的元素性质,他的左上角的n-1行n-1列的子矩阵是严格对角占优的(即对角元的绝对值大于该行其他元的绝对值的和,严格对角占优的矩阵非退化),从而M的秩>=n-1.但

分块对角矩阵(a...0)0.b是定义上的对角矩阵,那(0.a)b.0是对角矩阵吗?和前面那个是什么关系?

是反对角阵后者是前者的转置矩阵,当然前者也是后者的转置矩阵.

老师您好,已知0是矩阵A=[1,0,1;0,2,0;1,0,a]的特征值,求:a的值和正交矩阵P使P^-1AP为对角矩阵

因为0是A的特征值所以|A|=2(a-1)=0所以a=1A=101020101|A-λE|=-λ(2-λ)^2A的特征值为0,2,2(A-2E)X=0的基础解系为a1=(0,1,0)',a2=(1,0

对下列实对称矩阵A,求一个正交矩阵P,使P^-1AP=P^TAP=D为对角矩阵 2 0 0 0 -1 3 0 3 -1

|A-λE|=2-λ000-1-λ303-1-λ=(2-λ)[(-1-λ)^2-3^2]=-(2-λ)^2(4+λ).所以A的特征值为:2,2,-4.(A-2E)X=0的基础解系为:a1=(1,0,0

A、B是对角阵,矩阵A的对角元是B的置换,

就是把对角元的次序重新排一下比如说A=diag{1,4,2,2,5,1},B={5,1,2,1,4,2}

两个矩阵相乘为0矩阵,其中一个是对角矩阵,那么另一个是不是一定为0矩阵

当然不行比如说diag{1,0,1,0}*diag{0,1,0,1}=0再问:�����������ǶԽǾ����再答:˵���㿴�����ҵļǺ�,��Ӧ��������diag��ʲô��˼dia

证明:如果n阶矩阵A与对角型矩阵合同,则A是对称矩阵.

这个就按照合同的定义和脱衣原则就可以证明.A=P'diagP,其中diag是对角阵,P是可逆矩阵,这是合同的定义.那么A'=(P'diagP)'=P'diagP,第二个等号就是脱衣原则.就是去括号后从

设A是一个n阶上三角矩阵,并且主对角线上的元素不为0,如何证明它的逆矩阵也是上三角形矩阵?

证:用伴随矩阵的方法由A可逆,A^-1=A*/|A|记A=(aij),A*=(Aij)^T其中Aij=(-1)^Mij是aij的代数余子式,Mij是aij是余子式.当ii.2.某行乘非零常数在这两类变

证明、实对称矩阵A正定的充要条件是、有对角元>0的上三角矩阵、使A=B^TB

这就是所谓的Cholesky分解充分性没什么好说的对于必要性,直接用Gauss消去法来构造出B就行了,证明可以用归纳法

矩阵A 求可逆矩阵P 使得P^-1AP是对角矩阵 并写出这一对角矩阵

|A-λE|=-1-λ333-1-λ333-1-λ=5-λ335-λ-1-λ35-λ3-1-λ=5-λ330-4-λ000-4-λ=(5-λ)(-4-λ)^2.A的特征值为5,-4,-4(A-5E)X

A是对角矩阵,证明与A可交换的矩阵也为对角矩阵

题目少了条件,必须加上对角元素互不相同才可如图证明结论.经济数学团队帮你解答,请及时采纳.

线性代数:相似已知矩阵A与对角矩阵D相似,则A^2=D=1 0 00 -1 00 0 -1A.AB.DC.ED.-E需要

C因为A相似于D,所以(QT)AQ=DA=QD(QT)A^2=QD(QT)QD(QT)=QD^2(QT)D的特征值为1,-1,-1所以D^2特征值为1,1,1

对角矩阵相似问题A=(aij)n*n,是上三角矩阵,a的主对角元相等,且至少有一个元素aij不等于0(i

上三角阵主对角线元素即为特征值,由题意可知A的特征值为a,且为n重.即他的代数重数为n.现要求A可对角化,必须几何重数等于代数重数:即其次线性方程组(aE-A)X=0的解空间维数等于n,这就要求ran

任意n阶方阵都可表示成 A=D+N的形式,其中D与某对角矩阵相似.N为幂零矩阵(即存在m使得N^m=0)且DN=ND

这个分解叫Jordan–Chevalley分解,如果在复数域上讨论的话直接从Jordan标准型入手进行拆分即可.当然事实上结论对一般的域也是对的.