D是等腰△ABC底边AC的中点,过A,B,D做⊙O.求证:AB是⊙O的直径
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 11:41:56
(1)角A=90°,A在上,B在左因为:△ABC是等腰直角三角形角A=90°,PE垂直AB,PF垂直AC所以:角PEA=角PFA=90°故:四边形AEPF是矩形AE=PF在△PCF中因为:角PFC=9
(1)角A=90°,A在上,B在左因为:△ABC是等腰直角三角形角A=90°,PE垂直AB,PF垂直AC所以:角PEA=角PFA=90°故:四边形AEPF是矩形AE=PF在△PCF中因为:角PFC=9
连接AD∵△ABC是等腰直角三角形,AB=AC,D是斜边BC的中点∴∠DAE=∠DAC=∠C=45º,AD⊥BC∴AD=CD∵DE⊥DF∴∠ADC=∠EDF=90º∴∠ADE=∠F
延长DF交过A的垂线AG⊥AC于G∵BD为AC上的中线角ADF=角CDB∴△BDC≌△GDA∴AG=BC∴ACBG为正方形∴BC=BG∠CBF=∠GBF=45°∴△BCF≌△BGF∴∠CFB=∠GFB
∵D为AB的中点,DE⊥AB于D∴DE是AB的垂直平分线,∴EA=EB∵△EBC的周长为17cm∴EB+EC+BC=17即:EA+EC+BC=17AC+BC=17∴BC=17-AC =17-10
【有些地方标注有误,现更改如下:(1)把AD与BE的交点改为O;(2)把∠2改为∠CED.】原题应该是:已知△ABC是等腰直角三角形,E是AC的中点,连接BE,作AD⊥BE,交BC于点D,连接DE.证
将△CDF以D为旋转中心旋转180度,这样CD与BD重合,F落在F‘因为∠EDF=∠EDF‘=90度ED=EDDF=DF‘所以△DEF≌△DEF‘因为∠B=∠C=45度所以∠ABF‘=90度在Rt△E
(1)证明:如图1,连接AD,∵等腰直角三角形ABC,点D为BC的中点.∴∠BAC=90°,∠BAD=∠ACB=45°,AD⊥BC,AD=BD=CD=12BC,∵PE⊥AB,PF⊥AC,∠BAC=90
△DEF是以EF为底边的等腰直角三角形.[证法一]不失一般性,设点P在BD上.∵BC是等腰直角三角形ABC的底边,∴AB=AC,又BD=CD,∴AD⊥PD,而PE⊥AE,∴A、E、P、D共圆,∴∠PA
当D为BC的中点时,DE=DF.理由:∵AD为等腰三角形底边上的中线,∴AD平分∠BAC,又∵DE⊥AB,DF⊥AC,∴DE=DF.
BM=DE+DF.理由如下:∵S△ABC=S△ABD+S△ACD,∴12AC×BM=12AB×DF+12AC×DE,∵AB=AC,∴BM=DE+DF.
1.腰AB﹥底边BC∵BD把△ABC分成两个三角形的周长差为5cm,BC=12㎝∴AB=12+5=17㎝△ABC的周长=17+17+12=46㎝2.腰AB﹤底边BC∵BD把△ABC分成两个三角形的周长
等边三角形.周长为6.理由:PM+PN要最短,则P点在MN的中垂线上,又交AC于P,所以AP=CP=1,同理可证:AP=NP=1,又MN是三角形的中位线,所以MN=1,所以MPN是等边三角形,所以
因为DE平行于AB,DF平行于AC所以四边形AFDE是平行四边形,角BFD=角A,角CED=角A在三角形BFD与三角形CED中角B=角C,角BFD=角CED,BD=DC所以三角形BFD与三角形CED全
证明:∵AB=AC,∴∠B=∠C.∵OD⊥AB,OE⊥AC,∴∠ODB=∠OEC=90°.∵O是底边BC上的中点,∴OB=OC,在△OBD与△OCE中,∠ODB=∠OEC∠B=∠COB=OC∴△OBD
证明:作DE平行于BC,交AC于E点,连接OE、AO、OD∵D为圆O切点,∴OD⊥AB∵△ABC为等腰三角形,DE‖BC∴AD=AE又∵O为BC中点,∴∠DAO=∠OAE∵AD=AE,AO=AO,∠D
证:连结AD,BE,AD,BE交于点O ∵∠ADE+∠EDC=90° &
∠PDB=∠PBD=45+∠PBO=45+∠DPC(∠PDB外角)所以,∠PBO=∠DPC.又BP=DPRtΔBOP≌RtΔPDE所以,BO=PE2)PE=AO=BO=OC=a,AP=xEC=DE=O
在等腰直角三角形BMD中,MD=BM=2在等腰直角三角形CND中,DN=CN=3在直角三角形MDN中,DN=3,MD=2,求得MN=√13
等腰直角三角形连接AD,在三角形AED和CFD中,AE=CF,角C=角DAE,AD=CD,所以两个三角形全等,所以DE=DF,角CDF=角AED,角EDF=角AED+角ADF=角CDF+角ADF=90