e(x)是x的3阶无穷小是什么意思

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 11:00:53
e(x)是x的3阶无穷小是什么意思
3.设x趋0时,e^tanx-e^sinx与x^n是同阶无穷小,则为n= .

n=3e^tanx-e^sinx=e^sinx×[e^(tanx-sinx)-1]x→0时,e^sinx→1,e^(tanx-sinx)-1等价于tanx-sinx.tanx-sinx=tanx(1-

设x趋0时,e^tanx-e^sinx与x^n是同阶无穷小,则为n=

e^sinx-e^x=e^x(e^(sinx-x)-1)和sinx-x等价而lim(x->0)(sinx-x)/x³=lim(x->0)(cosx-1)/3x²=lim(x->0)

e的x次方减去一等价无穷小的证明

在x=0处泰勒展开,e^x=1+x+x^2/2!+x^3/3!.再问:这个等价无穷小,是不是可以直接用。不需要证明。再答:用的时候看情况,如果x为无穷小量,x^2以后的所有项为高阶无穷小量。不用证明

当X趋近0时,1-(e的-x次方)的等价无穷小是什么

因为e^x在x趋近于0时,等价无穷小是x+1e的-x次方=1/(e的x次方)所以当X趋近0时,1-(e的-x次方)的等价无穷小是1-1/(x+1)=x/(x+1)

当x趋近于0,e^tanx -e^x是x^n的等价无穷小,求n=

e^tan-e^x=e^x(e^(tanx-x)-1),x→0时,e^x→1,e^(tanx-x)-1等价于tanx-x,所以e^tan-e^x等价于tanx-x.所以,x→0时,tanx-x等价于x

当x趋于0时,确定无穷小e^x+sinx-1关于基本无穷小x的阶数.

就是求lim(x趋近0){[e^x+sinx-1]/x}可以用洛必达法则.对{[e^x+sinx-1]/x}的分子分母分别求导,得到{[e^x+cosx]}/1当x趋近0时,得1+1=2,所以无穷小e

x趋近于o(e的tanx次方减e的x次方)与x的k次方是同阶无穷小,求K的值

x趋近于0,lim[(e^tanx-e^x)/(x^k)]=lim{e^x*[(e^(tanx-x)-1]/x^k}=lim[e^(tanx-x)/x^k]=lim(tanx-x)/x^k=lim{[

请问为什么x的高阶无穷小加x平方的高阶无穷小等于x的高阶无穷小,麻烦大家解释下(^3^)

先形象的解释一下(但不是严格推理),o(x)表示比x更高阶的无穷小,假如x=0.1,那么o(x)可以看做是0.01,而o(x^2)=o(0.01)可以看做是0.001,那么0.01+0.001=0.0

当x→0时,下列函数那些是x的同阶无穷小?等价无穷小?高阶无穷小?低阶无穷小?

√(x^2+1)-1=[√(x^2+1)-1][√(x^2+1)+1]/[√(x^2+1)+1]=x^2/[√(x^2+1)+1]~x^2/[1+1]=x^2/2,因此为x的高阶无穷小因为|xsin1

x-sinx 等价无穷小是什么?

为x^3/3!即x^3/6再问:怎么算的~~3的阶乘怎么出来的?再答:直接用泰勒展开式呀:sinx=x-x^3/3!+x^5/5!-...x-sinx=x^3/3!-x^5/5!+..再问:==谢谢啊

一道关于微积分的题目当x趋于0时,(e^tanx)-e^x与x^n是同阶无穷小,则n为多少?

分子两项一阶泰勒展开分别为:1+tanx和1+x相减为tanx-xtanx三阶泰勒展开=x+x^3/3所以分子为x^3/3所以n=3

当x—>0时,f(x)=e^(2x)-1与x比较是等价无穷小还是高阶无穷小?

都不是,是同阶无穷小,高阶无穷小的结果是0等价无穷小的结果是1.当x趋于0f(x)=e^(2x)-1=2x最后结果是2.所以是同阶无穷小.

当X趋于0时,X的平方减sinX是X 箭头朝零 是高阶无穷小,还是等阶无穷小,还是低阶无穷小

是x的高阶无穷小,你说的箭头朝0没理解你是什么意思,高阶无穷小的定义是当x->0时,limx/y=0,x是y的高阶无穷小.若limx/y=无穷,则x是y的低阶无穷小,若limx/y=1,则x是y的等价

X→0时,e^x-(ax+b)是比x高阶的无穷小,其中a,b是常数

同学,首先要理解高阶无穷小:无穷小量是指自变量有某种趋向时以0为极限的一类函数至于高阶还是低阶自然是通过与其他无穷小量比较得到的是高是低完全是相对的比较的是函数值趋向于0的速度要说理解大概可以认为当自

已知当x趋于0时,(e^(x^2)-(ax^2+bx+c))是比x^2高阶的无穷小,试确定常数a,b,c.

lim(e^(x^2)-(ax^2+bx+c))/x²=0即Lim(e^(x^2)-(ax^2+bx+c))=01-c=0c=1lim[(e^(x^2)-1]-(ax^2+bx))/x

(cosx+sinx)^(3x)-1是x的几阶无穷小?

0用洛必达法则:lim((cosx+sinx)^(3x)-1)/(x^2)=3/2所以2阶

e的1/x次方 是无穷大还是无穷小

是无穷大还是无穷小都是在x的某一个趋向下的若x趋于正无穷或负无穷1/x趋于0e的1/x趋于1但x趋于0得从左右极限考虑x+趋于01/x趋于正无穷e的函数趋于正无穷但是x-趋于01/x趋于负无穷e的函数

e的tanx次方减去e的sinx次方与x的n次方在x=0时是同阶无穷小,求n?

首先,不是说加减法就不能做无穷小替换,我在另一个问题里回答过,你先去看一下,以免被他人(包括你的老师)误导.http://zhidao.baidu.com/question/122716796.htm

x趋近于0时,(1+x)^x-1是x的()阶无穷小

(1+x)^x-1=e^xIn(x+1)-1~xIn(x+1)~x^2,所以二阶无穷小再答:�ף��ҵĻش��������