椭圆三抛物面和抛物柱面围成的图形
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 17:57:40
,我写写吧,楼主自己解方程由于都是连续函数设目标函数g=x^2+y^2+z^2构建根号下也可以,但是麻烦目的就是求g的极值不妨构建拉格朗日函数F(x,y,z)=x^2+y^2+z^2+m(x^2+y^
不同,旋转抛物面的轴截面是圆形,椭圆抛物面的轴截面是椭圆!
图老是传不上,传得上的话就好,传不上追问我再问:答案对了,我想问下为什么积分区间是0到4?那个图形不是一个椭圆抛物面么,那x和y的负半轴应该也要积分啊再答:看到我画的积分区域没,是根据坐标轴是0且x=
令x=arcost,y=brsint,得V=∫∫∫dv=∫dt∫abrdr∫dz=∫dt∫abr(c-r^2/2)dr=-2πab∫(c-r^2/2)d(c-r^2/2)=-πab[(c-r^2/2)
根据对称性:V=∫(0,1)dy∫(0,√y)(x^2+y^2)dx=44/105再问:能详细讲下么,答案是88∕105
可以根据题的题意知道.
我做出来是长半轴为√(3(2+√3)),短半轴是√(3(2-√3)),用拉格朗日乘数法做的.如果你觉得答案靠谱就追问,我再把过程贴上去.再问:�鷳��дһ�¹���лл再答:����֮���ֵ�һ�
∵Z=2x^2+y^2∴Zx'│m=4,Zy'=-2∴切平面的法向量是(4,-2,-1)故所求切平面方程是4(x-1)-2(y+1)-(z-3)=0,即4x-2y-z=3所求法线方程是(x-1)/4=
Ω的体积=∫dx∫(x²+3y²)dy=∫(2x³-x^4-x^6)dx=1/2-1/5-1/7=11/70
D={(x,y):x^2+y^2=0,y>=0},z=xy,az/ax=y,az/ay=x,于是面积=二重积分_D根号(1+(az/ax)^2+(az/ay)^2)dxdy=二重积分_D根号(1+x^
体积=∫∫D(x²+y²)dxdy=∫∫D(p²)pdpdθ=∫(0,2π)dθ∫(0,√a)p³dp=1/4∫(0,2π)p^4|(0,√a)dθ=1/4∫(
设z=ax²﹢by²∵过点∴a+4b=6a/9+b=1∴a=18/5b=3/5∴该椭圆抛物面方程为:z=18/5*x²+3/5*y²交线:x²+y
花画圆的程序:fori=-3:0.001:3y=-sqrt(9-i^2);plot(i,y);holdonendholdonfori=-3:0.001:3y=sqrt(9-i^2);plot(i,y)
令f(x,y,z)=x^2+y^2-z=0偏f偏x=2x,偏f偏y=6y.偏f偏z=-1所以在点(2,1,7)对应的法向量为(4,6,-1)[将x=2带入2x,y=1带入6y,z=7带入-1得到]切平
抛物线围绕中心轴旋转360°
这里直接把z=x+2y代入椭圆抛物面2y^2+z^2=xh中消去z后得到:x^2+4xy-xh+5y^2=0这是一个曲面立体,再求其与平面z=0的交线即可,所以有方程组x^2+4xy-xh+5y^2=
用切片法V=∫s(z)dz更简单些.s(z)是对一个特定的z,所截的椭圆x^2/(4-z)+y^2/[4(4-z)]=1的面积所以s(z)=πab=π√(4-z)*2√(4-z)=2π(4-z)所以V
柱面(cylinder)动直线沿着一条定曲线平行移动所形成的曲面.动直线称为柱面的直母线,定曲线称为柱面的准线.当准线是圆时所得柱面称为圆柱面;特别地,如果直母线垂直于圆所在平面时,所得柱面称为直圆柱
图像过原点当x^2+y^2增大即圆的半径增大时z也增大所以它的图像是倒立的圆锥面顶点在原点