椭圆的离心率为根号2 2,过焦点F的直线与椭圆交于AB两点,中点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 00:08:22
椭圆的离心率为根号2 2,过焦点F的直线与椭圆交于AB两点,中点
已知椭圆离心率为根号6/3,过右焦点F且斜率为1的直线交椭圆于AB两点,对任意椭圆一点M,证明存在角x,

不妨设a=3,c=√6,则b^2=3,椭圆方程为x^2/9+y^2/3=1,右焦点F(√6,0),AB:y=x-√6,代入上式得x^2+3(x^2-2x√6+6)=9,4x^2-6x√6+9=0,x1

已知椭圆中心在原点,焦点在X轴上,离心率为 根号2/2,过椭圆的右焦点且垂直于长轴的弦长为 根号2

1.设椭圆方程为x^2/a^2+y^2/b^2=1右焦点(c,0)e=c/a=√2/2a=√2ca=√2bx=c代入椭圆方程c^2/2c^2+y^2/c^2=1y=±c*√2/2弦长=|y1-y2|=

已知正方形ABCD,已AC为焦点且过点B的椭圆离心率?

两焦点间的距离是:2c=边长×√2椭圆上的点到两焦点的距离和是:2a=边长×2离心率是c/a=√2÷2=二分之跟二

已知椭圆的中心在原点,焦点在x轴上,离心率为根号5/5,且过P(-5,4),则椭圆的方程为

设椭圆方程:x^2/a^2+y^2/b^2=1离心率e=c/a=√5/5∴a=√5倍的c∴a^2=5c^2=c^2+b^2∴b^2=4c^2∴方程为:x^2/5c^2+y^2/4c^2=1代入点P(-

已知中心在原点,焦点在X轴上的椭圆的离心率为2分之根号2,F1F2为其焦点,一直线过点F1与椭圆相交于A,B两

这题用以下思路可能算不出,也不知道是不是我中间解错了,但是写那么多不忍心删掉……个人觉得可以尝试一下极坐标的方法,由题e=c/a=1/√2,则a=√2c=√2b,椭圆方程x²/2c²

已知中心在原点o 焦点在x轴上 离心率为2分之根号3的椭圆过点(根号2.2分之根号2)-1.求椭圆的

(1)由题设条件,设c=3k,a=2k,则b=k,∴椭圆方程为x24k2y2k2=1,把点(2,22)代入,得k2=1,∴椭圆方程为x24y2=1.(2)①由y=kxmx24y2=1,得(14k2)x

已知椭圆C的中心在原点,焦点在x轴上,离心率为2/3,且过点(3倍根号3,根号5),点A,B分别是椭圆长轴的左、右端点,

(1)设方程:x²/a²+y²/b²=1将点坐标代入27/a²+5/b²=1(1)c/a=2/3令a=3t,c=2t,那么b²=a

椭圆C:x²/a²+y²/b²=1(a>b>0)的离心率为2分之根号3,过右焦点

由于e=√3/2,所以不妨设a=2,c=√3,于是椭圆方程变为x²/4+y²=1……①这是一个定比分点弦的问题,设直线方程为x=√3+t,y=kt,与椭圆方程①联立,并整理,得到(

已知椭圆的对称轴为坐标轴且焦点在x轴,离心率e=根号5/5,短轴长为4,(1)求椭圆方程,(2)过椭圆的右焦点作一条斜率

e=c/a=√5/5,2b=4,a2-b2=c2,a=√5,b=2,c=1.直线为y=2x-2.y=2x-2,x2/5+y2/4=1,3x2-5x=0,x1+x2=-5/3,x1x2=0,中点为(-5

椭圆与直线的位置关系过椭圆左焦点F且斜率为根号3的直线交椭圆于A、B两点,若FA=2FB,则椭圆离心率为?答案2/3,

方法一:A(x1,y1),B(x2,y2)由题:y1/y2=-2-2-1/2=y1/y2+y2/y1=(y1平方+y2平方)/y1y2=(y1+y2)^2/y1y2-2(y1+y2)^2/y1y2=-

若椭圆的一个焦点分长轴为根号3:2的两段,求离心率

一个焦点分长轴为根号3:2的两段,等价于(a+c)/(a-c)=√3/2(2-√3)a=(√3+2)c2=a/c=(2-√3)^2再问:离心率是c/a啊再答:哦,笔误,答案没错,你可以试试2-√3)a

已知椭圆方程为x^2/4+y^2/3=1,求以椭圆的焦点为焦点,离心率为根号2的双曲线方程

解椭圆x^2/4+y^2/3=1的焦点为(±1,0)即c=1又由双曲线离心率为√2即e=c/a=√2,即a=1/√2=√2/2又由b^2=c^2-a^2=1-1/2=1/2故双曲线方程为x^2/(1/

椭圆中心在原点焦点在x轴上离心率e根号2/2,过椭圆的右焦点切垂直于长轴的弦长为根号2

题知c/a=e=√2/2a=√2c,又题知(c,√2/2)在椭圆上带入椭圆方程得c=1,b=1,a=2方程x²/2+y²=1,设直线方程为x=my+n带入椭圆方程得(m²

已知椭圆中心在原点,焦点在x轴上,离心率e=根号2/2,过椭圆的右焦点且垂直于长轴的弦长为根号2

x^2/a^2+y^2/b^2=1x=c时c^2/a^2+y^2/b^2=1y^2=b^2(1-c^2/a^2)所以根号2=2b根号(1-c^2/a^2)2=4b^2(1-c^2/a^2)(e^2=c

正方形ABCD,AC为焦点,且过B的椭圆的离心率是

这道题还是应该先画图,画图更好理解.可以设该正方形的边长为1.则AC=√2,且AC为焦点,则该椭圆的焦距,2c=√2,c=√2/2,又因该椭圆过点B,AC所在轴肯定是长轴(焦点所在轴),于是B在短轴上

椭圆C 的离心率为1/2 以原点为圆心,椭圆的短半轴为半径的圆与直线x-y+根号6=0相切 过椭圆右焦点的直线与椭

依题求得b=√3.a=2.c=1那么直线表示为:y=k(x-1)①椭圆:3x^2+4y^2=12②或者3y^2+4x^2=12⑦①②联立得到:(3+4k^2)x^2-8k^2x+4k^2-12=0x1

已知椭圆的焦点在X轴上,短轴为4,离心率为5分之根号5.若直线L过该椭圆的左焦点,交椭圆于M、N两点,且|M

已知椭圆的焦点在X轴上,短轴为4,离心率为5分之根号5.若直线L过该椭圆的左焦点,交椭圆于M、N两点,且|MN|=16/9倍根号5,求直线L的方程.介绍常规做法根据题意b=4/2=2,b²=