概率论证明:对任意事件A,B,证明:|P(AB)-P(A)P(B)|≤1 4
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 13:20:35
只需证明:P[(AUB)C]=P(AUB)*P(C).P[(AUB)C]=P[ACUBC]=P(AC)+P(BC)-P[(AC)(BC)](加法公式)=P(AC)+P(BC)-P[(ABC)]=P(A
如果事件A,B相互独立,那么(非A),B也相互独立.证明:P(非A)=1-P(A)-----(1)P(B)=P{B(A+(非A))}=P(AB)+P{(非A)B}=P(A)P(B)+P{(非A)B}(
因为时间P(a)的概率是0,所以发生时间a的可能为零,所以发生时间b时必然不与a相关,所以a,b是相互独立时间呀
这个不满足吧,举个反例:若A,B独立,则有:P(AB)=P(A)P(B)那么|P(AB)-P(A)P(B)|=0
定义:A,B相互独立,如果P(AB)=P(A)P(B).P(AB)≤P(A)=0-->P(AB)=0P(A)P(B)=0*P(B)=0P(AB)=P(A)P(B)-->A,B相互独立
因为P(B)=1所以在条件A之下B发生的概率仍然为1,即P(B|A)=1P(AB)=P(A)P(B|A)=P(A)
由于对任意正概率随机事件C有P(AB|C)=P(A|C)*P(B|C),因此特别地,对于C=Ω有P(AB|Ω)=P(A|Ω)*P(B|Ω)即P(ABΩ)/P(Ω)=P(AΩ)/P(Ω)*P(BΩ)/P
P[AUB]>=P[B]=1==>P[AUB]=1P[AUB]=P[A]+P[B]-P[AB]1=P[A]+1-P[AB]==>P[AB]=P[A]提醒:不要过于相信“心里明白“.虽然正确的结论,你想
因为P(B)=1所以在条件A之下B发生的概率仍然为1,即P(B|A)=1P(AB)=P(A)P(B|A)=P(A)
这个要用到集合的知识,A-B=A-AB,而AB是A的子集,所以P(A-AB)=P(A)-P(AB),P(A-B)=P(A-AB)=P(A)-P(AB)
设A单独发生的概率为a,B单独发生的概率为b,AB同时发生的概率为c,AB同时不发生的概率为s,则a+b+c+s=1P(A)=a+cP(B)=b+cP(AB)=c原式左侧=|c-(a+c)(b+c)|
这个结论是错的.举个简单的例子:当A,B互斥,而P(A)和P(B)又都大于零时,有P(AB)=0,而P(A)P(B)>0.可知结论不一定成立
根据概率的性质可知0≦P(AB)≦P(A)≦10≦P(AB)≦P(B)≦1因此有0≦P(AB)P(AB)≦P(A)P(B)≦1带入欲证明的不等式左边则有:|P(AB)-P(A)P(B)|≦|P(AB)
很简单啊,用反证法,若A与B互不相容即有P(AB)≠0,若A与B独立,则有P(AB)=P(A)*P(B)=0,又因为P(A)>0且P(B)>0,所以假设不成立,所以A与B不独立
……借助维恩图.设全事件Ω.集合A、集合B分别表示事件A、B.则A-B为属于A但不属于B的部分,所以P(A-B)=(A-B)/ΩP(A)=A/ΩP(B)=B/ΩP(A)-P(B)=(A-B)/Ω所以P
第一个很好证啦.根据提议P(A)>P(B),P(A)>P(C)1>=P(A)(这是基本的概率定义)上述成立~第二题我不知道题设是不是还是第一题的~抱歉~
设A单独发生的概率为a,B单独发生的概率为b,AB同时发生的概率为c,AB同时不发生的概率为s,则a+b+c+s=1P(A)=a+cP(B)=b+cP(AB)=c原式左侧=|c-(a+c)(b+c)|