正三角形ABC内任意一点P,向三边作垂线PD.PE.PF,连接PA.PB.PC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 01:22:02
(1)S=√3/4*a^2(2)h=PD+PE+PF=√3/2*a(3)h=1,a=2√3/3PD=1/2,PE=1/3,PF=1-PD-PE=1-1/2-1/3=1/6h/a=sin60°=√3/2
我不知道你学过高等几何没?高等几何的证明就很简单,等边三角形经过仿射变换变成以p1为内心的一个正三角形,且对应的三角形的面积比是一个常数,因为变换过的正三角形满足结论,所以原结论成立!
连接AP、BP、CP,设等边三角形的高为h,如图:∵正三角形ABC边长为2∴h=22−12=3∵S△BPC=12BC•PDS△APC=12AC•PES△APB=12AB•PF∴S△ABC=12BC•P
过P作PM∥AC交AB于M,过P作PN∥AB交AC于N,有AM=PN,AN=PM.△PBM中,PM+BM>PB(1)△PCN中,PN+CN>PC(2)(1)+(2)得:PM+BM+PN+CN>PB+P
把△ABP绕点B顺时针旋转60°得到△BCQ,连接PQ,∵∠PBQ=60°,BP=BQ,∴△BPQ是等边三角形,∴PQ=PB=4,而PC=5,CQ=4,在△PQC中,PQ2+QC2=PC2,∴△PQC
可把三角形ABC内的三个三角形分别沿AC,BC,AB折叠,得到对应点P,P2,P3,得到一个六边形,三角形ABC的面积为六边形面积的1/2,然后再连接P1P2P3得到四个特殊的四边形,此题答案也就出来
这题可以引伸一个很著名的定理:P是任意三角形ABC内一点,则当∠APB=∠BPC=∠APC=120`时PA+PB+PC达到最小值.我简单证明一下:将三角形APC绕C点顺时针旋转60`的三角形A'P'C
维维安尼定理等边三角形内任一点到三边的距离之和等于它的高
设正三角形ABC,其内一点P,至三边距离为PE、PF,PG,高为h,边长a,分别边结AP、BP、CP,AB=BC=AC=a,S△ABC=S△PAB+S△PBC+S△PAC=(PE*AB+PF*BC+P
几年级的作业,这么难?记录下来,关注中...------------------------------------------按原题作图:以B为中心,按60度旋转△BAP,使得A点旋转至C点,P点至
相等.正三角形中AB=BC=AC,面积为S.2S=AD*BC=2S(PAB)+2S(PBC)+2S(PAC)=PE*AB+PF*BC+PG*AC=BC(PE+PF+PG),约掉BC,得AD=PE+PF
(1)在AP上取点D使PD=PC,连接DC角APC=角ABC=60度所以三角形PCD是等边三角形角BPD=角ACB=60度角BPC=120度角ADC=180-60=120度又角PAC=角PBCCD=C
答案是a先延长DP,EP,FP假设FP的延长线交BC与G因为ABC是正三角形,且PD‖AB,PE‖BC,PF‖AC所以,PF=BD,PD=DG,PE=GCPD+PE+PE=BD+DG+DC=BC=a
150以pb为边向外在等边三角形pbp1则可证bp1c全等bpa(SAS)bpc=bp1c所以p1b=pbp1c=pa所以p1pc=90bpc=bp1c=90+60=150
错题一个,除非B是最小角,否则不一定成立.
5再问:为什么?有详细解答吗,谢谢!再答:连接PAPBPC你用三个小三角形的面积等于等边三角形的面积就可以得到
如果S△AFP+S△PCD+S△BPE=332,那么△ABC的内切圆半径为(A.1再问:过程呢...再答:由于有根号,所以我没法写,自己去菁优网看看再问:没优点不能看..--再答:
证明:设P是ΔABC内任意一点,P到ΔABC三边BC,CA,AB的距离分别为PD=p,PE=q,PF=r,记PA=x,PB=y,PC=z.则x+y+z≥2*(p+q+r)证明如下:因为P,E,A,F四
根号3面积法连接PAPBPC利用△ABC的面积=△PAB的面积+△PBC的面积+△PAC的面积最后得到结论P点到三边距离之和等于△ABC的高
延长AP,交BC于M,AC+MC>AM=AP+PM,BM+MP>PBAC+MC+BM+MP>AP+BP+PMPA+PB