正三角形ABC内接于圆O,P是弧BC上一点,且PB

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 09:49:04
正三角形ABC内接于圆O,P是弧BC上一点,且PB
已知,如图,△ABC是⊙O的内接正三角形,点P为弧BC上一动点,探索:PA,PB,PC的关系

PA=PB+PC.理由: 在PA上截取PD=PB,连接BD,∵ΔABC是等边三角形,∴AB=BC,∠ABC=∠C=60°,∴∠P=∠C=60°,∴ΔPBD是等边三角形,∴PB=BD,∠PBD

如图,三角形ABC内接于圆O

关于如图,三角形ABC内接于圆O

圆柱的母线PA=4,正三角形ABC内接于圆柱下底面的圆O,圆柱底面圆O的半径为4.求三棱柱P-ABC的体积.

三棱柱P-ABC?应该是三棱锥P-ABC!由题意可知下底面圆心O是正三角形ABC的中心,∠AOB=120°且S△ABC=3S△AOB=3*(1/2)*AO*BO*sin∠AOB=3*(1/2)*4*4

1)已知:如图1,三角形ABC是圆O的内接正三角形,点P为弧BC上一动点,求证PA=PB+PC

以P为圆心,PB为半径画圆,交AP于D,连接BD则:△PBE为正三角形即:PD=PB∵∠ADB=180-60=120º,∠CPB=60+60=120º∴∠ADB=∠CPB 

如图,△ABC是⊙O的内接三角形,PA是⊙O的切线,PB交于AC于点E,交⊙O于点D,若PE=PA,∠ABC=60°,P

∵PA是圆O的切线,PDB是圆O的割线,∴PA2=PD•PB,又PD=1,BD=8,∴PA=3,(3分)又PE=PA,∴PE=3.∵PA是圆O的切线,∴∠PAE=∠ABC=60o,又PE=PA,∴△P

在圆O的内接三角形ABC中,AB=AC,D是圆O上一点,AD的延长线交BC的延长线于点P.

1、因为AB=AC,所以角ABC=角ACB角ABD=角ABC-角DBC角P=角ACB-角CAD又角DBC=角CAD所以角ABD=角P又角BAD=角PAB所以三角形ABD相似于三角形APB所以AB/AP

正三角形ABC内接与圆O,P是劣弧BC上任意一点,PA与BC交于点E,求证(1)PA=PB+PC (2)PA×PE=PB

(1)在AP上取点D使PD=PC,连接DC角APC=角ABC=60度所以三角形PCD是等边三角形角BPD=角ACB=60度角BPC=120度角ADC=180-60=120度又角PAC=角PBCCD=C

援助的母线PA=4,正三角形ABC内接于圆柱下底面的圆O,圆柱底面圆O的半径为4.求三棱柱P-ABC的体积.

由题意可知下底面圆心O是正三角形ABC的中心,∠AOB=120°且S△ABC=3S△AOB=3*(1/2)*AO*BO*sin∠AOB=3*(1/2)*4*4*(√3/2)=12√3所以V三棱锥P-A

如图.三角形ABC内接于圆O,P,B,C在一直线上,且PA的平方=PBXPC,求证:PA是圆O的切线

PA^2=PB*PC,PA/PB=PC/PA,<APB=<CPA,△APB∽△CAP,<PAB=<ACP,∴PA是圆O的切线.(圆外切割线逆定理). 若要继续证明,则

△ABC是圆O的内接三角形,过A的直线交圆O于P,交BC的延长线于D,AB×AB=AP×AD

(1)证明:如图、连接BP因为:AB×AB=AP×AD  所以:AB/AP=AD/AB在△ABP和△ADB中∠PAB=∠BAD(公共角)AB/AP=AD/AB∴△ABP∽△ADB【

已知等边三角形ABC内接于圆O,点P在弧BC上,则角BPC的度数为多少?

连接AP,∠BPA=∠BCA=60度,∠CPA=∠CBA=60度,∠BPC=∠CPA+∠BPA=120度

等边三角形ABC内接于圆O,P是劣弧BC上的一点,延长BP至D,使BD=AP,连结CD.

△PDC是等边三角形理由:因为△ABC是等边三角形所以AC=BC,∠BAC=60°因为∠CAP=∠CBP,AP=BD所以△APC≌△BCD(SAS)所以PC=CD因为四边形ABPC是圆内接四边形所以∠

已知正三角形abc内接于圆o,四边形defg为圆o的内接正方形(d、e在直径上,f、g在圆上的正方形)S三角形abc=a

设圆半径为r,则内接正三角形ABC的边长等于r√3,高等于3r/2,面积S3=r²3√3/4;一边在直径上的内接正方形DEFG边长为r√(4/5),面积S4=4r²/5;S3/S4

如图,三角形ABC内接于圆O,AD平分角BAC,延长BC到P,使PD=PA,求证:D是圆O的切线

延长AO交园边于点K,连接KC并延长交AP于E∵∠B=∠K(两角都是弦AC的圆周角相等)∵∠PDA=∠PAD ( PA=PD已知,等边对等角)且∠CAD=∠DAB (AD

已知:如图等边三角形ABC内接于圆O点P是弧BC上,求证:PB+PC=PA

证明;∵⊿ABC是等边三角形∴AB=AC=BC,∠ABC=60º在PB的延长线上截取BD=PC,连接AD∵ABPC四点共圆∴∠ABD=∠ACP又∵BD=PC,AB=AC∴⊿ABD≌⊿ACP(

如图1、2、3、……n、M、N分别是圆O的内接正三角形ABC、正方形ABCD、正五边形ABCDE、…、正n边形ABCDE

第一个是120度,第二个90度,第三个72度.以第一个为例:可以在AC上取一点P,让AP=CN=BM.这样三角形OMN,ONP,OPM全等角MON=360/3=120度同理:正n变形该角度是360/n