正三角形abc的边长为a,D,E,F分别为BC,CA,AB的中点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 00:57:48
S阴影=SΔABC-S半圆=√3/4×2^2-1/2π×1^2=√3-1/21π.再问:如图,正三角形ABC的边长为a,D、E、F分别为BC、CA、AB的中点,以A、B、C三点为圆心,a/2长为半径作
由三角形ABC是边长为2a的正三角形,三角形的面积为:34(2a)2=3a2;因为平面图形的面积与直观图的面积的比是22,所以它的平面直观图的面积是:3a222=64a2.故选C.
已知△ABC的平面直观图△A1B1C1是边长为a的正三角形.那么原△ABC是正四面体.只要求出一个面的面积就可知道总面积.S三角形A1B1C1=1/2×a×√3/2×a=√3/4×a²S△A
(1)求△ABC的面积S;∵等边三角形边长=4∴BD=2∵AB^2=AD^2+BD^2∴BD=√(AB^2-BD^2)=√12∴S△ABC=BC*AD/2=4*√12/2=4√3(2)判断AC、DE的
连接AD,则AD垂直于BC.AD=2分之根号3,AE=2分之A所以S阴影=S三角形ABC-3S扇形AEF=[(2倍根号3-兀)/8]乘a^
二分之根号三axa/2-a/2xa/2πx1/2=八分之a的平方乘以(二倍根号三减π)
√3/4a²-1/2π×﹙a/2﹚²=﹙2√3-π﹚a²/8.
维维安尼定理等边三角形内任一点到三边的距离之和等于它的高
= a/2 /sin60度 = (根号3)a/4外接圆面积 S = 3.14&nb
原平面图中垂直的线段,在直观图中夹角为45°(或135°),横向长度不变,纵向长度缩短一半.在平面直观图△A'B'C'(边长为a的正三角形)中,取C'B'中点D',连接A'D',则A'D'垂直B'C'
答案是a先延长DP,EP,FP假设FP的延长线交BC与G因为ABC是正三角形,且PD‖AB,PE‖BC,PF‖AC所以,PF=BD,PD=DG,PE=GCPD+PE+PE=BD+DG+DC=BC=a
设正△ABC,顶点A,作AH⊥BC,垂足H,AH=√3a/2,底边B、H、C三点不变,从H作与BC夹角为45度的射线,截HA1=AH/2=√3a/4,连结BA1、CA1即为直观图,在直观图中,作A1H
由已知得原三角形底边是a,该边上的高是√6a∴面积=√6a²/2
1.P为AC中点时,△PDC为正三角形,△PBC为直角三角形PB=√3·PC=√3·a/2PD=a/2△PBD周长L=PB+PD+BD=a+√3·a/22.作点B关于AC对称的点B',连DB'交AC于
阴影部分的面积=△ABC面积-3扇形面积=△ABC面积-半圆面积=(根号3/4-π/8)*a^2
三角形面积减去三个扇形的面积因为是正三角形,所以三个角都是60度,每个扇形都是60/360=1/6个圆的面积三个扇形总面积就是一个半圆的面积,圆的半径就是a/2,总面积π*(a/2)*(a/2)/8=
(本小题满分12分)证明:(Ⅰ)连接AO交BC于点E,连接PE.∵O为正三角形ABC的中心,∴AO=2OE,且E为BC中点.又AD=2DP,∴DO∥PE,--------------(2分)∵DO⊄平
已知如下图示:S△ABC=12×2×3=3,阴影部分的扇形面积,S扇=60360π•32=π2,则豆子落在扇形ADE内的概率P=S扇S△ABC=π23=3π6,故答案为:3π6.
正△ABC是边长为a,高为√3a/2,一半为√3a/4,斜二直观图三角形高为√3a/4*sin45°=√6a/8,斜二直观图的面积=a*√3a/4*sin45°/2=√6a^2/16.
AM:AN=MD:DN=C三角形BDM:C三角形DNC=(AB+BD):(AC+CD)=(4+8/5):(4+12/5)=7/8