正定矩阵A为正交矩阵,单位矩阵

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 07:05:42
正定矩阵A为正交矩阵,单位矩阵
怎么证酉矩阵A为正定矩阵,则A为单位阵

正定矩阵一定是对称矩阵,A又是酉矩阵,故A只能是单位阵或负单位阵,而负单位阵不是正定阵,A只能是单位阵.

如何证明n阶矩阵A即是正交矩阵又是正定矩阵当且仅当A为单位矩阵?

如果A是单位矩阵,则A是正交矩阵也是正定矩阵,这是显然的.如果A既是正交矩阵也是正定矩阵,则A=A'=A逆,所以A^2=E,A的特征值是1或-1.又A正定,特征值都是正的,所以A的特征值都是1.所以A

请问:A,B均为n阶实对称矩阵,且都正定,那么AB一定是:A对称矩阵B正定矩阵C可逆矩阵D正交矩阵

正定则顺序主子式都大于0所以|A|≠0,|B|≠0所以|AB|=|A||B|≠0所以AB可逆所以(C)正确.再问:这样呀,那其它答案为什么不正确,或者为什么不能确定呢?

证明::正交正定矩阵必为单位矩阵!

由定义,正交正定矩阵a,a*a'=a'*a=E;另外显然有a*E=E*a=E;比较二式,由于ab=ba=E中如果a、b正定,对正定的a,有b唯一,(正定的b,有a唯一),所以b=E,同理证得a=E;所

求证:正交矩阵A是正定矩阵的充分必要条件为A是单位矩阵

设k是A的特征值则k是A^T的特征值,1/k是A^-1的特征值因为A正交,则A^-1=A^T所以k=1/k所以k=1or-1若A正定,则k=1.所以A的特征值都是1.所以A与单位矩阵相似所以A=E.反

证明如果一个正交矩阵是正定矩阵,那么它必为单位矩阵

要意识到正交矩阵的特征根是1或-1然后矩阵正定,特征值全为1.Ax=ax,a为特征值,x为特征向量,则两边做转置x'A'=ax'.于是有x'A'Ax=ax'ax由于A正交,左边为x'x,而右边为aax

怎样证明矩阵A为正定矩阵

正定矩阵的性质:设M是n阶实系数对称矩阵,如果对任何非零向量X=(x_1,...x_n),都有XMX′0,就称M正定(PositiveDefinite).因为A正定,因此,对任何非零向量X=(x_1,

若n阶方程A既是正定矩阵,又是正交矩阵,证明:A是单位矩阵

设对称矩阵的特征值分解是:A=QtMQ(Qt表示Q的转置,下同)其中M是A的特征值排成的对角矩阵AtA=EQtMQQtMQ=EQQtMMQQt=QEQt=EM平方=E又因为M是对角矩阵所以M的对角线元

实对称矩阵为正定矩阵的充要条件为什么是与单位矩阵合同

实对称阵A是正定阵则A的特征值{a1,a2,..,an}都是正的而实对称阵是正交相似于对角阵diag(a1,..,an)即有正交阵P使得A=P'diag(a1,a2,..,an)P=P'diag(√a

n阶矩阵A既是正交矩阵又是正定矩阵 证明A是单位矩阵

楼上的想法不对吧,你只说明了矩阵A是一个对角矩阵,并且可能是单位阵的倍数,不能说明A是单位阵,要说明单位阵,除了说明:“正交矩阵表明A^(-1)=A',正定矩阵表明A合同于E,即A=C'EC,所以A^

若n阶矩阵A,B都正定,则A,B一定是() a.对称矩阵b.正交矩阵c.正定矩阵d.可逆矩阵

亲爱的楼主:【正解】这个(D)正确因为A,B正定所以|A|>0,|B|>0所以|AB|=|A||B|>0所以AB可逆.祝您步步高升,新年快乐!记得点击采纳为满意答案哦,谢谢您的支持!再问:��л���

如何证可逆实矩阵可分解为一个正交矩阵与一个正定矩阵的乘积

这东西叫极分解.需要先证一个引理:任何一个实方阵A,都存在正交方阵P,Q使得PAQ=diag(a1,a2,...,ar,0,0...,0),其中ai都是正实数有这个引理.题中所给的是可逆矩阵,设这个可

矩阵A与B合同,B为正定矩阵,那么A是正定矩阵吗?

答案是肯定的.而且我认为问题没有那么复杂.B是正定矩阵,则存在可逆矩阵T,使得B=TT’.(右上角一撇代表转置,下同)A与B合同,则存在可逆矩阵P,使得A=PBP’.令Z=PT.显然Z为可逆矩阵,且A

设A为正定矩阵,则下列矩阵不一定为正定矩阵的是

正定矩阵的特征值ai>0A^T,A+E,A^-1,A-2E的特征值分别为ai,ai+1,1/ai,ai-2所以只有A-2E的特征值可能为负值所以A-2E不一定正定

设A正定矩阵,证明A^m为正定矩阵.

1、当m为偶数时,A^m=[A^(m/2)]'[A^(m/2)]为正定阵2、当m为奇数时,A^m=A^((m-1/)2)AA^((m-1)/2)=[A^((m-1/)2)]'AA^((m-1)/2)=

正交矩阵是不是单位矩阵,求正交矩阵P使A与对角矩阵相似,为什么单位化

正交矩阵不一定是单位矩阵,但单位矩阵是正交矩阵矩阵正交的充分必要条件是其列向量是标准正交向量组,故必须正交化,单位化

设A,B是n阶正定矩阵,则AB是:A.实对称矩阵.B.正定矩阵.C.可逆矩阵.D.正交矩阵

这个(C)正确因为A,B正定所以|A|>0,|B|>0所以|AB|=|A||B|>0所以AB可逆.

正交矩阵与正定矩阵的关系

设M是n阶实系数对称矩阵,如果对任何非零向量X=(x_1,...x_n)都有XMX^t>0,就称M正定.正定矩阵在相似变换下可化为标准型,即单位矩阵.所有特征值大于零的矩阵也是正定矩阵.-------

设A为可逆矩阵,试征;ATA为正定矩阵

证明:对任一n维非零向量X因为A可逆,所以AX≠0.所以X^T(A^TA)X=(AX)^T(AX)>0[内积的非负性][这里用到A是实矩阵的条件]所以A^TA是正定的.