正定矩阵点乘正定矩阵还是正定矩阵

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 08:01:03
正定矩阵点乘正定矩阵还是正定矩阵
正定矩阵一定是对称矩阵吗?

线性代数范围内是的这是因为矩阵的正定来自于二次型的正定而二次型的矩阵都是对称矩阵所以正定矩阵是对称矩阵

正定矩阵一定是对称矩阵吗

不一定.再问:比如说,,,,再答:1239

Matlab验证矩阵是否正定

用svd分解判断是错的,奇异值取的都是正的.可以[u,s]=eig(C),其中s就是特征值对应的矩阵,看是否都为正

什么事正定矩阵?正定矩阵的性质有哪些?

对于对称矩阵A,若对任意非零向量x,都有x*AX>0成立,则称A为正定.如果A是正定矩阵,那么a[i][i]一定大于0.因为,a[i][i]=ei*Aei>0.其中,ei为第i个单位向量.

线性代数正定矩阵 

再答:正定矩阵的充要条件是所有顺序主子式大于0

线性代数正定矩阵

设你说的那个矩阵是A,由正交矩阵的定义,有(A的转置)*A=I,I是单位阵.(A的转置)*A的第(1,1)个元素就是a1^2+a2^2+a3^2=1,(A的转置)*A的第(1,3)个元素就是a1c1+

线性代数、正定矩阵、正定二次型.

(1)(b1,b2,b3,b4)=(a1,a2,a3,a4)PP=20561336-11211013(2)若(a1,a2,a3,a4)X=(b1,b2,b3,b4)X则(a1,a2,a3,a4)X=(

一个矩阵的相似矩阵正定,这个矩阵正定么?

如果这个矩阵可以化为对角矩阵的话那求特征值吧,它的特征值就是对角矩阵的元素,前提是该矩阵是可化为对角矩阵的,如果是对称矩阵,那对称矩阵一定可以化为对角矩阵再问:亲你说的跟我问的不是一码事啊

matlab生成对称正定矩阵

恐怕要自己写程序,但有个粗略的思路:1.随机生成一个单位正交阵A(这个不困难,用到的只有for循环和函数rand)2.随机生成一个对角元素均大于0的对角矩阵B(这个更容易了,就是生成几个随机正数而已)

一道线性代数【正定矩阵】

一定是正定矩阵.因为满足矩阵的方程也满足特征方程,所以把A=r代入,r为特征值,所以特征值都是正数.所以是正定矩阵.很高兴为您解答,liamqy为您答疑解惑如果本题有什么不明白可以追问,再问:可答案是

线性代数,正定矩阵的证明

这个和Hilbert矩阵差不多,一般利用Gram矩阵证明.考察多项式基底1,x,x^2,...,x^{n-1},它们线性无关定义内积为xf(x)g(x)在[0,1]上的积分,那么上述基底的Gram矩阵

设A正定矩阵,证明A^m为正定矩阵.

1、当m为偶数时,A^m=[A^(m/2)]'[A^(m/2)]为正定阵2、当m为奇数时,A^m=A^((m-1/)2)AA^((m-1)/2)=[A^((m-1/)2)]'AA^((m-1)/2)=

正定矩阵是什么?

线性代数!

正定矩阵的定义

设M是n阶实系数对称矩阵,如果对任何非零向量,X=(x_1,...x_n)都有X′MX>0,就称M正定(PositiveDefinite).所有特征值大于零的对称矩阵(或厄米矩阵)也是正定矩阵

什么是对称正定矩阵

令A为阶对称矩阵,若对任意n维向量x0都有>0(≥0)则称A正定(半正定)矩阵;反之,令A为n阶对称矩阵,若对任意n维向量x≠0,都有<0(≤0),则称A负定(半负定)矩阵.

正定矩阵证明 

正定的定义是:A是n阶实系数对称矩阵,如果对任何非零向量X=(x_1,...x_n)都有X'AX>0,就称A正定矩阵你的题目中说明除了x=0都不能使得Ax=0成立,也就是只有x=0才能使得AX=0,这

正定矩阵可逆?

正定的充分必要条件是其顺序主子式全大于0若A正定,必有|A|>0故A可逆.