正态分布 Y=aX b,证Y~N

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 01:15:50
正态分布 Y=aX b,证Y~N
概率论正态分布设随机变量X、Y相互独立,且都服从正态分布N(1,2),则下列随机变量中服从标准正态分布的是A.(X-Y)

A-YN(-1,2)X-YN(0,2+2)=N(0,4)(X-Y)/2N(0,4/2^2)=N(0,1)选A再问:虽然看懂了...不过可以这么做的依据是什么啊?就是说,为什么可以对XY做运算?再答:这

设随机变量X与Y相互独立,且都服从正态分布N(0,1),则P{max(X,Y)≥0}=______.

P{max(X,Y)≥0}=1-P{max(X,Y)<0}=1-P{X<0,Y<0}由于随机变量X与Y相互独立,所以:P{max(X,Y)≥0}=1−P{X<0}P{Y<0}=1−Φ2(0)=34.故

概率论与数理统计设随机变量X服从正态分布N(0,1),Y服从正态分布N(0,1),且X,Y相互

设A=E(X^2/(X^2+Y^2)),B=E(Y^2/(X^2+Y^2)),A+B=1,A-B=0.所以...A=0.5

X,Y相互独立.他们都服从标准正态分布N(0,1).证明Z=X^2+Y^2服从λ=1/2的指数分布

有没有学过特征函数?没有的话很难解释...第一问服从自由度为2的卡方分布,也就是Gamma(1,1/2)分布,写出密度函数就是指数分布第二问用正态分布线性组合性质直接就有了,用特征函数很好解释

设随机变量X服从正态分布,且X~N(-3,4),则连续型随机变量Y=()服从标准正态分布N(0,1)

Y=(X+3)/2由X~N(-3,4)知,μ=-3,σ=2.则Y=(X-μ)/σ=(X+3)/2服从标准正态分布N(0,1)

设随机变量X 服从正态分布 N(μ,σ^2),y=ax+b 服从标准正态分布,则a=?,b=?

YN(0,1)则:EY=aEX+b=aμ+b=0DY=a²DX=a²σ²=1a=1/σb=-μ/σ或者将X标准化Y=aX+b=X-μ/σN(0,1)判断出a=1/σb=-

概率高手请进设随机变量X服从正态分布N~(0,1),Y服从正态分布N~(1,4),且相关系数=1则:答案P{Y=2X+1

回答:设他们的概率密度分别是f(x)和f(y),分布函数分别是F(x)和F(y).那么f(x=1)≠f(y=3).注意不等号“≠”.但是F(x=1)=F(y=3).注意等号“=”.一个变量X的概率“密

设随机变量X服从正态分布N(u,16),Y服从正态分布N(u,25).记p=P(X≦u-4),q=P(Y≧u+5),则p

应该是相等的再问:求计算过程再答:计算过程,,,u是对称轴,X的西格玛是4,所以,p表示小于u-西格玛的概率。同理,q表示大于u+西格玛的概率。每一个正态曲线的大于u+西格玛,u+2西格玛,u+3西格

设连续随机变量X服从标准正态分布N(0,1),求Y=1-2X的概率密度函数

正态分布的线性函数还是正态分布E(Y)=E(1-2X)=1-2EX=1D(Y)=D(1-2X)=4D(X)=4故Y~N(1,4)

已知总体Y服从正态分布N(u,1),且Y=lnX,求X的期望E(X)

E(X)=∫(-∞,∞)e^y*(1/2π)^(1/2)*e^((y-u)/2)^2dy=e^(1/2+u)

随机变量X服从正态分布N(u1, ),Y服从正态分布N(u2, ),X与Y独立,则X+Y服从

(u1+u2,σ1^2+σ2^2)^代表平方哈,这是正态分布的可加性吧再问:那X-Y呢?谢谢你啊,要考试了其实是想知道X+Y与X-Y的方差相不相等。麻烦帮个忙再答:相等的,当X,Y不独立,D(X+(或

相互独立随机变量X,Y,服从正态分布N(0.1)

1fX(x)=(1/√2π)e^(-x^2/2)fY(y)=(1/√2π)e^(-y^2/2)因为x,y独立,所以联合概率密度所以fXY(x,y)=fX(x)fY(y)=(1/2π)e^[-(x^2+

设随机变量X与Y独立,X服从正态分布N(μ,σ^2 ),Y服从[-pi,pi]上的均匀分布,求Z=X+Y的密度函数

fY(y)=1/(2π),y∈[-pi,pi],其他为0FZ(z)=P{Z再问:fZ(z)=∫(-π,+π)φ((z-y-u)/σ)/(2π)dy=[Φ((z+π-u)/σ)-Φ((z-π-u)/σ)