正态分布N(μ,0.1^2),μ置信度为0.95置信区间

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 18:00:49
正态分布N(μ,0.1^2),μ置信度为0.95置信区间
概率论正态分布设随机变量X、Y相互独立,且都服从正态分布N(1,2),则下列随机变量中服从标准正态分布的是A.(X-Y)

A-YN(-1,2)X-YN(0,2+2)=N(0,4)(X-Y)/2N(0,4/2^2)=N(0,1)选A再问:虽然看懂了...不过可以这么做的依据是什么啊?就是说,为什么可以对XY做运算?再答:这

正态分布

解题思路:关于高考解题过程:你好,正态分布是人教A版的一个高考考点,但是,北京高考会不会出现关于正态分布的题目,那就难说,所以既然是考点,就必须弄清楚。不过,正态分布这个考点比较简单,也好学。最终答案

设随机变量X 服从正态分布 N(μ,σ^2),y=ax+b 服从标准正态分布,则a=?,b=?

YN(0,1)则:EY=aEX+b=aμ+b=0DY=a²DX=a²σ²=1a=1/σb=-μ/σ或者将X标准化Y=aX+b=X-μ/σN(0,1)判断出a=1/σb=-

设随机变量X服从正态分布N(u1,a1^2),Y服从正态分布N(u2,a2^2),且P{IX—u1IP{IY—u2I

把正太分布化为标准正太分布就可以解决了,答案是A再问:�Ҳ���ת���������鷳���������ֱ�Ӱ���Ľ�������ͼҲ����Ŷ��ʮ�ָ�л��再答:{��x-��1��/��1}

概率论 正态分布X-N(μ,σ2),则P{μ-kσ

由X~N(μ,σ2),知(X-μ)/σN(0,1)有P{μ-kσ

设随机变量X服从正态分布N(μ,σ^2),已知P(X

P(x0)=0898f就是那个圈加一竖(ps:莫非也是seu的孩纸==)

设总体X服从正态分布X~N(μ,σ^2),X1,X2,...,Xn为来自该总体的一个样本,

U=n^(1/2)*(xˉ-μ)/σ服从标准正态分布,即UN(0,1),因此,D(U)=1.

相互独立随机变量X,Y,服从正态分布N(0.1)

1fX(x)=(1/√2π)e^(-x^2/2)fY(y)=(1/√2π)e^(-y^2/2)因为x,y独立,所以联合概率密度所以fXY(x,y)=fX(x)fY(y)=(1/2π)e^[-(x^2+

关于概率论正态分布?如果说总体服从正态分布N(μ,σ2 ). 样本容量为10,那么X拔服从N(μ,σ2/10),那么其中

单个个体的值的样本服从正态分布N(μ,σ2)啊,因为是从这个总体中找的X呀.

概率统计里 为什么X*服从正态分布 N(μ,σ2/n),则 (X*-μ)/ (σ/n1/2) 服从标准正态分布 N(0,

这是随机变量的标准化啊,X*的标准化随机变量等于X*减去它的数学期望的差除以它的均方差,即[X*-E(X*)]/[D(X*)]^½=(X*-μ)/[σ^2/n]^½=(X*-μ)/

正态分布图,已知μ,δ2

这个你看正态分布的公式,然后拟合曲线就可以spss做不了的我经常帮别人做这类的数据统计分析的

随机变量X服从正态分布N(2,4),若P(X

由X~N(2,4),得Y=(X-2)/2~N(0,1),因此P(X