正态分布x1和x2的差服从

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 14:11:08
正态分布x1和x2的差服从
已知随机变量X1,X2均服从正态分布,利用matlab怎么画随机变量函数Y的概率密度图啊?

matlab只能通过仿真来模拟,而不是准确的概率密度函数.具体程序是下边这样的.x1=2+randn([100000,1]);x2=4+randn([100000,1]);Y=714+807*(x1)

已知几个随机变量X1,X2,X3.Xn服从正态分布,

首先考虑两个的情况,如果证明了y=ax1+bx2是两个正态的和,也是正态的,接下来就直接用归纳法证毕,因为比如3个和的情况就是ax1+bx2+cx3=y+cx3也是两个正态的和,因此正态.n就能退化到

若x1,x2服从标准正态分布,x1+x2与x1-x2是否相互独立

Cov(X1+X2,X1-X2)=Var(X1)-Cov(X1,X2)+Cov(X1,X2)-Var(X2)=Var(X1)-Var(X2)=0所以X1+X2和X1-X2不相关.如果(X1,X2)的联

设随机变量X1和X2相互独立,且都服从正态分布N(0,1/2),令Y=X1-X2,求E|Y|

Y=X1-X2服从N(0,1)E(Y)=0E(|Y|)=(2/√2π)∫ye^(-y^2/2)dy=√(2/π),积分范围y>0E(|Y|²)=E(Y²)=D(Y)+E²

X服从正态分布 ,为什么 (X1+X2)^2/2服从自由度为1的卡方分布 ,

依题意,X1、X2均服从标准正态分布(X1+X2)/√2服从N(0,1)相当于只有1个标准正态分布的平方,所以自由度为1的卡方分布

求联合概率分布的问题如果x1服从标准正态分布在已知x1的条件下,x2服从均值-5+2x1方差为1的正态分布如何求x1,x

不太懂联合概率分布的意思可能和我们教材不一样吧我只会求X2的方差为4.不好意思.没有期望怎么能求出F(X)的概率分布呢?

设随机变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2服从正态分布N(0,22),X3服从参数为

D(x1)=3D(x2)=22D(x3)=3D(Y)=D(x1)+4D(x2)+9D(x3)=3+88+27=118如有意见,欢迎讨论,共同学习;如有帮助,

设总体X服从正态分布X~N(μ,σ^2),X1,X2,...,Xn为来自该总体的一个样本,

U=n^(1/2)*(xˉ-μ)/σ服从标准正态分布,即UN(0,1),因此,D(U)=1.

设总体X服从正态分布X~N(μ,σ^2),X1,X2,...,Xn为来自该总体的一个样本,则样本均值是

样本均值?那不直接是(X1+.+Xn)/n不过应该不是问这个吧可以说详细点?再问:是等于N(μ,σ^2)吗再答:有完整的题目么?这个X~N(μ,σ^2)意思是总体X服从总体均值为μ,总体标准差为σ的正

设总体Y服从正态分布N(0,a),x1,x2,x3,x4为其样本,试问n=(x1-x2)^2/(x3+x4)^2服从什么

服从F(1,1)分布总体Y服从正态分布N(0,a),x1,x2,x3,x4为其样本.这句话说明了x1,x2,x3,x4相互独立,且都服从正态分布N(0,a),又由于独立的两态分布随机变量的线性组合仍是

设总体X服从正态分布N(u,σ^2) ,X1,X2,X3,...,Xn 是它的一个样本,则样本均值A的方差是 ? (需要

正态分布的规律,均值X服从N(u,(σ^2)/n)因为X1,X2,X3,...,Xn都服从N(u,σ^2),正太分布可加性X1+X2...Xn服从N(nu,nσ^2).均值X=(X1+X2...Xn)

2 .设随机变量y服从标准正态分布N(0,1),令求()的联合概率P{X1=0,X2=0}()

先看一下定义,如下,P{X1=0,X2=0}()应该是正泰的概率密度的函数联合概率和独立两个事件A和B的联合概率定义在相同的样本空间中(结果落在A和B中的概率)P(AB)=P(C);其中:事件C=A∩

matlab求概率用matlab怎么写程序呀:x1服从区间(2,8)上的均匀分布,x2 服从N(2,1)正态分布,x3服

%%MonteCarlo方法Len=1e6;x1=2+rand(1,Len)*6;x2=2+randn(1,Len);x3=exprnd(3,1,Len);x=x1+x2.^2+x3.^2;count

X服从标准正态分布,即N(0,1).X1,X2为从X中取的2个数,求2X1+3X2的方差.

X1和X2是独立的吧?D(2X1+3X2)=4D(X1)+9D(X2)=4x1+9x1=13再问:我也是一直在想是不是独立的。现在的观点也是两者相互独立。谢

X1,X2分别服从标准正态分布,那么Δ=X1-X2的期望和方差怎么求啊?

1、x1、x2是否相互独立,与你得出的Δ=X1-X2无关.只与你使用环境有关,与你建模时假设有关,也就是实际情况.2、如果相互独立,标准正态分布的函数也是标正分布,期望与方差根据公式可求的.如果不独立