正方体内接球的半径等于

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 15:34:23
正方体内接球的半径等于
如图,在棱长为1的正方体内,有两球相外切,并且又分别与正方体内切.求球半径和

这题图  看了半天 自己又画了个才看明白.球就2个,不是中间一个大球,每个角一个小球,那不能.2个球分别与正方形的三个面相内切.没有球接触到正方体的棱是必然的,要不原题“

棱长为1的正方体内有两个球相外切且又分别与正方体内切,求两球半径之和.两个球都应该在体对角线上.但为什么两个球不都在下面

设大圆半经R,小圆半经r,由题可知(根2+1)*(R+r)=根3,故两半经之和为R+r=根3/(根2+1),由于两球与正方体内切,充分利用空间不可能在下再问:还是不太懂,为什么不会在下面?在下面也符合

空间立体几何题在棱长为1的正方体内,有两球相切,并且又分别与正方体内切,求两球半径之和,球的半径是多少时 两球体积最小

设:两球半径分别为R,r则R+r+√3(R+r)=√3(正方体对角线与边长之比为√3)所以R+r=√3/(1+√3)V=4/3×π(R^3+r^3)=4/3×π(R+r)(R^2+r^2-Rr)=4/

在棱长为1的正方体内有两个球相外切且又分别与正方体内切求两球半径之和

AO1的计算过程与O2C1的计算过程是一样的!AO1里,图太小,不方便你理解所以我从O2C1来跟你讲是怎么回事你看看最下方的对定点O2C1的这个正方体因为圆O2与大正方体相切,所以圆心O2到各个面的距

在棱长为1的正方体内有两个球相外切且又分别与正方体内切,求两球半径之和

两个半径和不是太难;难的是图形不太好画:    

棱长为1的正方体内有两个球相外切且又分别与正方体内切,求两球半径之和.为什么两球球心会在体对角线上.

每个球都与正方体的三个面相切,则球心到这三个面的距离都相等,则球心就在体对角线上..再问:为什么每个球都与正方体的三个面相切再答:每个球都与正方体的面相切,则这个球就一定与正方体的三个面相切。相当于在

在棱长为1的正方体内有两个球外切,且又分别与正方体内切.球两球半径和.

上图中,AB=√2 AC=√3 设球O1,O2的半径分别为R1,R2. 则O1M=AF=FM=R1 AM=√2R1 AO1=√3R1 同理O

求棱长为a的正四面体外接球与内切球的半径

连接正四面体的各个三角形的中心,形成一个新的正四面体.容易证明,新正四面体的边长为a/3.我想,按这个思路做下去,大概是比较简单的做法.原来四面体的内切圆是新四面体的外接圆.所以外接圆半径R是内切圆半

边长为a的正四面体外接球和内切球的半径求法.

1、外接球.边长为a的正四面体可以看成是边长是(√2/2)a的正方体截出来的,则其外接球直径是正方体边长的√3倍.2、内切球半径.设正四面体是S-ABC,过点S作高线SH交底面ABC于点H,则内切球球

棱长为a的正四面体外接球与内切球的半径为?

提示:连接正四面体的各个三角形的中心,形成一个新的正四面体.容易证明,新正四面体的边长为a/3.我想,按这个思路做下去,大概是比较简单的做法.原来四面体的内切圆是新四面体的外接圆.所以外接圆半径R是内

设正四面体内接球的半径为r、那正四面的表面积跟体积怎么求啊

如图 AF为高 做FG⊥BC OE垂直于AG设正四面体边长为d则有BC=d BG=1/2*d FG=根号3/6*dAG=根号3/2*d ∴A

棱长为a的正三棱锥,内接球和外切球半径各是多少?

正三棱锥P-ABC,棱长a设底面三角形ABC的AB、BC、CA边中点为D、E、F易得三角形BPF、AEP、CDP全等,BF、CD、AE交于O,且PO⊥平面ABC任选PO上一点O',易证明O'到PD、P

1,已知正方体的棱长为1,则该正方体外接球的体积是?

八分之三根号三πtosatisfyforwhatthemustwhethe

棱长等于1的正方体内接于一球体,则该球的表面积是多少?

此时此正方体的中心与球体的中心重合球体的直径应为正方体的体对角线即R=根号3所以半径为r=根号3/2所以球的表面积S=4派r^2=4*派*3/4=3派

棱长为1的正方体外接球的表面积和体积为

根据题意有正方体对角线(即外接球直径)是√3,所以外接球半径是√3/2.于是根据公式外接球表面积S=4πr2=3π.体积V=4/3*πr3=√3π/2.

求棱长为3的正方体外接球的表面积和体积0 3Q,

这个要画图,可以求出穿过球心并穿过正方体对角顶点的那根线,连结侧面的对角线,由勾股定理得3²+3²=18,于是长度就是根号18,由于正方体与侧面的两根棱是垂直的,于是就垂直于这个面

一个正方体内接于高为40cm,底面半径为30cm的圆锥,则正方体的棱长是?

解题思路:考查了圆锥的轴截面,以及圆锥的平行于底面的截面的性质解题过程:

若正方体外接球的体积是 32π/3,则正方体的棱长等于

解可设正方体的棱长=a.易知,其外接球的直径,即是该正方体的体对角线,∴2r=(√3)a∴8r³=(3√3)a³又V=(4/3)πr³∴(32π)/3=(4/3)π[(3

立体几何内接球问题立体几何常见的正三棱锥\三棱柱等图形内接球\外接球都有什么性质?就是切点是什么啊,直径半径是什么啊,的

首先关于立体几何常见的正三棱锥\三棱柱等图形内切球\外接球及其组合问题的解题核心在于把握球心与半径,例如外接球球心到三棱锥\三棱柱顶点距离相同,即半径;内切球球心到三棱锥\三棱柱各面距离相同.其次希望