正方形abcd中 e为ab的中点,p为ac上任意一点,pe pb=y

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 09:35:43
正方形abcd中 e为ab的中点,p为ac上任意一点,pe pb=y
在正方形ABCD中,E是AB的中点,BF⊥CE于F,那么S△BFC:S正方形ABCD为______.

设正方形ABCD的边长为2a,∵E是AB的中点,∴BE=a,∴CE=BE2+BC2=5a,∵BF⊥CE,∴∠EBC=∠BFC=90°,∵∠ECB=∠BCF,∴△BCF∽△EBC.∴BC:EC=2:5.

如图,在四棱锥S-ABCD中,底面ABCD是正方形,SA⊥平面ABCD,且SA=SB,点E为AB的中点,点F为SC的中点

证明:(Ⅰ)连接AC、AF、BF、EF、∵SA⊥平面ABCD∴AF为Rt△SAC斜边SC上的中线∴AF=12SC(2分)又∵ABCD是正方形∴CB⊥AB而由SA⊥平面ABCD,得CB⊥SA∴CB⊥平面

正方形ABCD中,E为AB的中点,F为AD上一点且AF=4分之1AD,判断三角形FEC的形状?并说明理由.

△FEC是直角三角形证明∵正方形ABCD中,E为AB的中点,AF=1/4AD设AF=x,AE=2x正方形中EF²=AF²+AE²=x²+4x²=5x&

如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E,F分别为AB,PB的中点

(1)CD⊥ADP∴CD⊥APEF∥=AP/2﹙中位线﹚∴EF⊥CD⑵设PD=1取坐标系D﹙000﹚A﹙100﹚C﹙010﹚P﹙001﹚设G﹙a,0,b﹚∈PAD则F﹙1/2,1/2,1/2﹚GF=﹛

如图,正方形ABCD中,E为AB的中点,F为AD上的一点,且AF=1/4AD,求

请等一会,正在努力为您解答再问:嗯再答:你要答案还是思路啊,答案的话我没有计算器,不好弄啊再答:讲一下思路好吗再问:思路再答:AF=1/4AD,AD=2AE所以tan∠AEF=1/2可求得∠AEF的度

在正方形ABCD中,E为AB的中点,F为AD上的一点,且AF为四分之一AD.判断三角形CEF形状.并说明理由

设正方形边长为aAF=a/4,DF=3a/4.AE=BE=a/2EF^2=(AE^2+AF^2)=5a^2/16EC^2=(BE^2+BC^2)=5a^2/4=20a^2/16CF^2=(DF^2+C

在四棱锥P-ABCD中,PD垂直底面ABCD,底面ABCD为正方形,PD=DC,E,F分别是AB,PB的中点 .

(2)做AM垂直PB交PB于点M,连接MC因为PD=DC,PD垂直底面ABCD,设正方形边长a易得PA=PC=√2a且三角形PAB与三角形PAC全等所以AM垂直PB,MC垂直PB即角AMC为所求角度因

在四棱锥P-ABCD中,PA⊥面ABCD,底面ABCD为正方形,PA=AB=1,E是PD的中点.

(1)证明:连接BD交AC于点O,连接EO.∵O为BD中点,E为PD中点,∴EO∥PB.∵EO⊂平面AEC,PB⊄平面AEC,∴PB∥平面AEC.(2)∵四边形ABCD是正方形∴BD⊥AC,∵PA⊥平

如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E、F分别是AB、PB的中点.

十几年了,最近突然开始回顾学生时代,只有这立体几何还记得,(1)求证:EF⊥CD;∵ABCD为矩形∴CD⊥AD又∵PD⊥平面ABCD∴PD⊥CD∴CD⊥平面PAD,CD⊥PA∵E、F均为中点∴EF∥P

在四棱锥S-ABCD中,底面ABCD为正方形,E,F分别是AB SC的中点.求证:EF平行平面SAD.

证明,连接AC并取AC中点P,连接EP,PF在三角形SAC中,FP是中位线,所以FP//SA,所以FP//平面SAD又在正方形ABCD中,P是AC中点,所以P也是BD的中点,所以EP也是中位线且EP/

在正方形ABCD中,E,F 分别是AB,AD的中点,求证CF⊥DE

设CF和DE交于点O证明:∵AE=DFAD=DC∠EAD=∠FDC∴△EAD≌△FDC∴∠AED=∠DFC又∠ADE+∠AED=90°∴∠ADE+∠DFC=90°∴∠FOD=90°∴CF⊥DE

在四棱锥S-ABCD中,底面ABCD是正方形,SA⊥平面ABCD,且SA=AB,点E为AB的中点,点F为SC的中点,求证

求证:EF⊥CD①  设O是ABCD中心,则FO∥SA﹙⊿SAC中位线﹚ ∴FO⊥CD  又EO⊥CD    

如图所示,在正方形ABCD中,E为BC的中点,F为AB上的一点,且BF=4分之1 AB.已知正方形ABCD的面积为16

如图,边长AB=4BE=EC=2BF=1/4AB=1Sdce=1/2X4X2=4Sbef=1/2x2x1=1Sdaf=1/2x4x3=6Sdef=Sabcd-Sdce-Sbef-Sdaf=5

在正方形ABCD中,E为AB的中点,F是AB上的一点,且AF等于4/1AD,证明FES是直角三角形

题目有误:F应该是AD上的一点AF=1/4AD设边长是1因为E为AB的中点AF=1/4AD所以AE=BE=1/2AF=1/4BC=1因为AF/EB=AE/BC=1/2∠A=∠B所以△AEF相似△BEC

在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E、F分别是AB、PB的中点

设底面正方形边长为1,DE=√5/2,△PDB是RT△,BD=√2,PD=1,PB=√3,DF=PB/2=√3/2,PA=√2,EF=PA/2=√2/2,根据勾股定理

如图,在正方形ABCD-A1B1C1D1中,E,F,M,N分别为棱AB,CC1,C1D1的中点.

连接BA1,A1NBA1//EM,A1C1//EC所以面BA1NF//EMC因为面BFN属于面BA1NF所以平面CEN//平面BFN

正方形ABCD中,E为AB中点,BM垂直EC,垂足为M,则三角形BCM与正方形ABCD面积之比为多少.

只提供思路:三角形BCE的面积是正方形面积的四分之一;关键是证明小三角形BME的面积是中三角形BCM面积的四分之一(面积比是对应边比的平方)那么,中三角形BCM面积是大三角形CEB面积的五分之四结果是