正方形ABCD中,AB=8,点E在BC上一点,BE=3,则EC=ED最小值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 22:08:42
黄金分割的定义:把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比.其比值是一个无理数,用分数表示为(√5-1)/2很显然,F点正是这个黄金分割点,根据定义就知道了.如果要证明的话
(1)∵ABCD是正方形,∴AB=AD,∠DAB=90°,∵AE=BF=13AB,∴AF=23AB,∴EF=53AB,∴EF:AE=5:1,则EF:AE的值为5;(2)过E、F点作EG⊥AC于G,FH
这个很easy先证△ABF≌△DAE∵∠AFB=∠DEA又∵∠AFB+∠FAB=90∴∠DEA+∠FAB=90∴FA⊥DE
用换底法..累死了,偶简述可以不?三棱锥B1-BDE等同于三棱锥D-B1BE对于三棱锥D-B1BE底面积S△B1BE可求DC⊥△B1BE所在面则DC为高三棱锥体积可求然后求S△DEB根据已知的体积即可
连接de,df,将三角形dae以D为旋转中心顺时针旋转90度,E落在BC延长线上H所以DE=DH,因为ae+cf=efae=ch所以ef=cf+ch即ef=fhde=dh,ef=fh,df=df三角形
如果是这样的话,EF=根号74而ED=根号65当EF=EH时,必定使H不在AD边上所以a=5不存在再问:没看懂再答:如果BF是5,BE是7,那么EF的长就是根号74那是一个菱形,所以EH也是根号74,
(1)连结OB,OC.易知OB=OC,∠BOC=90°,∠OBM=∠OCN=45°而∠EOG=90°∴∠BOM=∠BOC-∠EOC=∠EOG-∠EOC=∠CON∴△OBM≌△OCN(ASA)∴BM=C
(1)1.在△BEP,△CQP中∠B=∠C,BE=CP=6,BP=CQ=4△BEP≌△CQP2.若要△BEP≌△CQP除1之外的情况,则只有BE=CQ=6,BP=CP=5才成立设Q的运动速度为x,则C
AB=3B可以再A左边,也可以在右边所以B(±3,0)CD可以再x轴上方,也可以在x轴下方所以C(±3,±3)D(0,±3)即B(3,0),C(3,3),D(0,3)或B(3,0),C(3,-3),D
求证:EF⊥CD① 设O是ABCD中心,则FO∥SA﹙⊿SAC中位线﹚ ∴FO⊥CD 又EO⊥CD
1.已知正方形ABCD中,对角线AC=10CM,点P是AB边上的点,则点P到AC,BD的距离之和为__5倍根号2___.2.在矩形ABCD中,对角线AC,BD相交于点O,若角AOD=120度,AB=4
【解】延长AB,过F作FG⊥AB延长线于G∵正方形ABCD,AB=√2∴AD=BC=CD=AB=√2∴AC=√2×√2=2∵菱形AEFC∴AF=AC=2,BF∥AC∴∠FBG=∠CAB=45∵FG⊥A
延长AB,过F作FG⊥AB延长线于G∵正方形ABCD,AB=√2∴AD=BC=CD=AB=√2∴AC=√2×√2=2∵菱形AEFC∴AF=AC=2,BF∥AC∴∠FBG=∠CAB=45∵FG⊥AB∴B
SA=AB=BCBE=AE∠SAB=∠CBA=90°△SAE≌△CBESE=ECF是SC中点EF⊥SCEF⊥CDEF⊥面SCD:平面SCD⊥平面SCE
证明:延长CD到点P,使DP=AE;连接EP,交AD于QABCD为正方形,所以∠PDQ=∠EAQ=90∠PQD=∠AQEDP=AE所以△PDQ≌△EAQ,AQ=DQAD=CD,AE=DPCE=AD+A
这里有你要的答案:http://attach.etiantian.com/staticpages/study/question/question_5847824.htm
(1)证明:∵在正方形ABCD中,∠ABC=90°,PH⊥CE,∴∠PHE=∠CBE=90°(1分)又∵∠BEC=∠HEP,∴△EBC∽△EHP;(2)在Rt△BCE中,CE2=BE2+BC2=x2+
过B作BE垂直于X轴,过D作DF垂直于X轴∵∠BDE=30度,BE垂直于X轴∴∠BEA=90度∵AB=4∴BE=2,AE=2根号3∴B(2根号3,2)∵∠DAB=90度,∠BAE=30度∴∠DCF=6
在正方形ABCD中AD=AB=4,∠A=∠B=90°∵AM=1,BN=0.75∴BM=3∴AD/AM=BM/BN=4∴⊿ADM∽⊿BMN∴∠ADM=∠BMN∵∠ADM+∠AMD=90°∴∠BMN+∠A