正方形ABCD中,EF在BCCD上,且AF=BE+CD
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:30:54
第一问,用相似推出MN=1,和EF平行且相等,有平行四边形EFNM,FN//EM,EM//面FBC.第二问.还有第三问,你确定这是高一的题么.好像要用到空间向量的说再问:这是高一的题呀。。空间向量在必
因为:BE=B'FABCD—A'B'C'D'为正方体,所以BB'D'A'为平行四边形,所以A'D'//BB'//EF,BB'为平面BCC'B'上的线,所以,EF//平面BCC'B
解析:主要使用余弦定理来解答.∵E为B1C1中点,且 EG和B1C1成45°角,∴ 点G在: ① BB1的三分之一处,且BG1=1/3BB1, &nb
图上的字母C、D的确反了,这题有点难度:
⑴证明:把⊿ABE绕A逆时针旋转90º,到达⊿ADG∵EF=BE+DFFG=FD+BE∴FG=FE又 AE=AGAF=AF∴ΔAFE≌ΔAFG ﹙SSS﹚∴∠FAE=
过H作HN垂直AB于N,过E作EM垂直BC于M,EF交MN于O,四边形EDCM和CHNB是矩形,角EMF=角HNG=90度,EM=CD=BC=HN,EM垂直HN,角FEM=90度角EOH=角GHN,三
连接CB1,AB1CB1//DA1,EF⊥A1D,那么EF⊥CB1,EF⊥AC所以EF⊥ACB1很容易证DD1B⊥AC,则AC⊥BD1,同理AB1⊥BD1,所以BD1⊥ACB1所以EF//BD1
作DQ‖FE,CP‖HG.则DQ‖=FE,CP‖=HG[平行四边形对边],CP⊥DQ.∠DCP=90º-∠CDQ=∠QDA,⊿DCP≌⊿AQD.CP=DQ.EF=GH
AE=(-1/2)DA+(1/2)DC+DD'.AF=(-1/2)DA+DC+(1/2)DD'.[画图自明]
设AC与BD的交点为O,连接OH和OE因为H为BC的中点,O也为BD的中点,根据中位线定理可知OH平行且等于½DC,即OH平行且等于½AB,即OH平行且等于EF,所以平面O
分别过E、F作EG//A'B',FH//A'B',则EG//FH根据平行线分线段成比例,有:EG/A'B'=BE/A'BFH/C'D'=B'F/B'D因为A'B'=C'D',BE=B'F故EG/A'B
(1),分别过E、F点做EH、FH垂直于线AB.由于BF=B1E,两垂直线必然相交于H点,则可证得FH平行于BC,HE平行于BB1,所以平面BB1C1C平行于面HFE.所以线EF平行于面BB1C1C.
EF⊥FB,∠BFC=90°,∴BF⊥面EFCD∠DFC是二面角D-BF-C的平面角.设AB=2,则DC=2FC=√2﹙⊿BFC等腰直角﹚∠DCF=90º∴tan∠DFC=2/√2=√2⑵作
分别过E、F作EG//A'B'交BB'于G,FH//A'B'交B'C'于H则EG//FH所以EG/A'B'=BE/A'BFH/C'D'=B'F/B'D因为A'B'=C'D',BE=B'F所以EG/A'
(I)设AC与BD交于点G,则G为AC的中点.连EG,GH,由于H为BC的中点,故GH‖AB且GH=AB又EF‖AB且EF=AB∴EF‖GH.且EF=GH∴四边形EFHG为平行四边形.∴EG‖FH,而
侧棱SD⊥底面ABCD这一条件多余.证明:在平面SDC内作FG平行于CD,交SD与点G,连接AG;过F作三角形CDS边CD上的高FH,垂足为H,连接EH因为FG平行于CD,且CD平行于AE(已知+正方
从题目的条件,体积是确定的﹙祖衡定理﹚.可以在正方体中作这个图形. V﹙ABCDEF﹚=V﹙D-AGFE﹚+V﹙F-GBCD)=1.5×2×3/3+﹙3/4﹚×3
看不清图再问:再答:再问:EF//AB再答:��再答:再答:��������
图你自己画吧,由P向AB,BC,CD,AD作垂线,垂点分别为S,R,Q,T.由定理知,PQ/BC=EQ/EC,PQ/FD=CQ/CD,又因为CD=BC=2FD2EC,EQ=EC-CQ,化简可得4EC=