正方形abcd中,e是bc延长线上的一点,在de上截取df=ad

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 09:11:07
正方形abcd中,e是bc延长线上的一点,在de上截取df=ad
如图,正方形ABCD中,E为CD上一点,F为BC延长线上一点,CE=CF.

(1)证明:∵ABCD是正方形,∴DC=BC,∠DCB=∠FCE,∵CE=CF,∴△DCF≌△BCE;(2)∵△BCE≌△DCF,∴∠DFC=∠BEC=60°,∵CE=CF,∴∠CFE=45°,∴∠E

已知如下图,正方形ABCD中,E是CD边上的一点,F为BC延长线上的一点,CE=CF

1.∵ABCD是正方形∴BC=DC又∵∠ECB=∠FCD=90°CE=CF所以△BEC≌△DFC(SAS)2.∵CE=CF∴∠CEF=∠CFE=45°又∵△BEC≌△DFC∠BEC=60°∴∠EBC=

已知:如图,在正方形ABCD中,G是CD上一点,延长BC到E,使CE=CG,连接BG并延长交DE于F.

1证明:∵CG=CE∠DCB=∠DCE=90°BC=DC∴△BCG≌△DCE(SAS)2四边形E'BGD是平行四边形证明:∵四边形ABCD是正方形△BCG≌△DCE∴DC=AB∴E'B=AB-AE'D

已知,如图,在正方形ABCD中,G是CD上一点,延长BC到E,使CE=CG,连结BG并延长交DE于F,求证△BCG≌△D

因为ABCD是正方形,所以BC=DC.因为角DCB=角DCE,CE=CG.用SAS的方法证明全等即可也就是说:在△BCG和△DCE中∵BC=DC∠DCB=∠DCECE=CG∴△BCG≌△DCE

如图,E是正方形ABCD的边BC延长线上的点,且CE=AC.

(1)∵AC=CE∴∠E=∠CAE∵∠ACE=∠ACF+∠FCE=45°+90°=135°∴∠E=(180°-135°)/2=22.5°∴∠CFE=90°-22.5°=67.5°(2)∵CE=AC=根

如图,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB.

证明:(1)∵AC是对角线∴∠ACD=∠ACB=45°∵PC=PC,BC=DC∴△BCP≌△DCP(2)∵PE=PB∴∠PBC=∠PEC∵△BCP≌△DCP∴∠PBC=∠PDC∴∠PBC=∠PDC=∠

E是正方形ABCD的边BC延长线上的点,且BC=CE,四边形ACED是平行四边形吗?

根据已知 可得:AD‖CE;又正方形ABCD 所以 AB=CD ∠ABC=∠DCB=∠DCE=90已知:BC=CE所以 △ABC≌△DCE 

已知,如图,在正方形ABCD中,点G是BC延长线上一点,连接AG分别交BD、CD于点E、F.CG=nCE

(1)因为ABCD是正方形所以AB=BC,角BAE=角BCE.又BE=BE所以三角形BAE全等于三角形BCE所以角BAE=角BCE因为角BCE=角CEG+角G所以角BAE=角CEG+角G因为n=1时C

已知,如图1,在正方形ABCD中,P是对角线AC上点,E在BC延长线上,且PE=PB

(1)证明:设CD与PE相交于O因为四边形ABCD是正方形所以CD=CB角DCP=角BCP角BCD=90度因为CP=CP所以三角形DCP和三角形BCP全等(SAS)所以角PDC=角PBC因为PB=PE

在正方形ABCD中,G是CD上一点,延长BC到E,使CE=CG,连结BG并延长交DE于F,

∵正方形ABCD∴BC=DC,∠BCG=∠DCE=90º,又∵CE=CG∴易证△BCG≌△DCE(SAS)∴∠BGC=∠E,DE=BG=16,∠GBC=∠CDE∵∠BGC=∠DGF(对顶角)

如图,在正方形ABCD中,延长BC至点E,使CE=CA,求角CAE的度数

求图!如果ABCD是顺时针排列的话(逆时针也一样),延长BC后,连接AE,AC!由于ABCD是正方形,所以角ACD=45度!角DCE=90度!AC=CE,所以角CAE=角CEA,且角CAE+角CEA+

在正方形abcd中,点p是对角线ac上的一点,点e在BC的延长线上,且pe=pb.1.求证三角形

证明:(1)∵AC是对角线∴∠ACD=∠ACB=45°∵PC=PC,BC=DC∴△BCP≌△DCP(2)∵PE=PB∴∠PBC=∠PEC∵△BCP≌△DCP∴∠PBC=∠PDC∴∠PBC=∠PDC=∠

已知:如图,在正方形ABCD中,G是CD上一点,延长BC到E,使CE=CG,连接BG并延长交DE于F.(1)说明AD⊥D

(1)◆原结论有误,应该是BF⊥DE.证明:∵CG=CE;CB=CD;∠BCG=∠DCE=90°.∴⊿BCG≌⊿DCE(SAS),∠CBG=∠CDE.∴∠CBG+∠E=∠CDE+∠E=90°.故:∠B

在正方形ABCD中 F是AB上一点 E是BC延长线上一点 BF=CE 图中是否存

当然有了,连接fc用sas证三角形bcf和三角形dce全等,得cf等于de,所求为点c

关于正方形的几何题已知:在正方开ABCD中,E是BC上的任意一点,G在BC的延长线上.连接AE,过点E作EF垂直AE交角

可以这样做设F到边BC的距离为mBE为n则AE^2=AB^2+n^21EF^2=(AB-n+m)^2+m^22AF^2=(AB-m)^2+(AB+m)^2又因为AE垂直EF所以得2AB^2+2n^2+

正方形ABCD中,E是BC上的一点,F是BC延长线上的一点,CG平分∠DCF,联结AE,过点E作EG⊥AE,交CG于点G

证明:在BA上截取线段BM=BE,连接ME.则∠BME=∠BEM=45度,∠AME=135度;CG平分∠DCF,则∠GCF=45度,∠ECG=135度=∠AME;又AB-BM=BC-BE,即AM=EC

如图,正方形ABCD中,E在BC的延长线上,F在CD上,CE=CF,延长BF交DE于H,证明

要加油哦,这么简单的题.CE=CF,于是RT△BCF≌RT△DCE于是∠FBC=∠FDB.而且∠DFH=∠BFC..所以△BCF∽三角形DHF所以BH⊥DE再问:�����BCF〜���

如图,在正方形ABCD中,E是BC上一点,F是AD的延长线上一点,且DF=BE

详细解答请看下图,不好意思,有两个E,但你应该能看懂的啦!