正方形ABCD中,E是边CD的中点,F是线段CE的中点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 09:22:58
因为正方形ABCD所以AD=AB,∠ADE=∠ABF=90°且DE=BF所以△ADE全等△ABF所以∠FAB=∠EAD所以∠FAE=∠BAD=90°即AE⊥AF
证明:将AE与DF的交点设为O∵正方形ABCD∴∠ADC=∠C=90,AD=CD=BC∴∠DAE+∠AED=90∵E是CD的中点、F是BC的中点∴DE=CD/2,CF=BC/2∴DE=CF∴△ADE≌
分析:因为四边形ABCD是正方形,所以∠A=90º,AD∥BC,故∠AEB=∠EBC;由△ABE∽△EGB,知∠BEG=90º,在Rt⊿BEA中,∵AB=2,AE=x,∴BE=√﹙
设h1为⊿AEO的高设h2为⊿OFC的高因为E、F分别是AB和CD的中点所以AE=BE,DF=FC因为ABCD是正方形边长为8厘米所以AE=FC=8/2=4厘米因为三角形面积=底X高/2所以⊿AEO=
设正方形的边长为4a,∵E是BC的中点,CF=14CD,∴CF=a,DF=3a,CE=BE=2a.由勾股定理得:AF2=AD2+DF2=16a2+9a2=25a2,EF2=CE2+CF2=4a2+a2
EH^2=(1/3AB)^2+(2/3AB)^2=5/9AB^2EH^2/AB^2=5/9小正方形与大正方形的面积之比为5/9
∵AE⊥AF∴∠EAF=90°∵∠BAD=90°∴∠BAE=∠DAF∴AB=AD,∠D=∠ABE∴△ABE≌△ADF∴AE=AF,即△AEF是等腰直角三角形设DF=k,则AD=3k∴AF=√10k∵△
延长FE交AB的延长线与点O因为点E是BC中点所以OB=CF则有BC+CF=AB+BO=AO所以AF=AO△AOF为等腰三角形而E为OF中点所以∠OAE=∠EAF即为∠BAE=∠FAE再问:写出详细的
证法1:作EM⊥AF于M.∵∠B=90°,∴∠B=∠AME=90°,∵∠1=∠2,AE是公共边,∴BE=EM,∴Rt△ABE≌Rt△AME.∴AM=AB=BC,EM=BE.①连接EF,E是BC中点,∴
/>由ABCD是正方形可知AB=BC=CD=AD取BC中点H,连接AH,交BE于点N,则AF=CH=AD又由ABCD是正方形可知AF∥CH,所以AFCH是平行四边形,所以AH∥CF,因为BH=HC,所
S3=S2+S7+S8.理由:如图,图中S3的面积S3=SABCD-S△ABE-S△BCF-S△CDE-S△ADF+S2+S7+S8化简得S3=BC•CD-12×(BE+EC)×CD-12×(DF+F
BC=4CF,CF/DE=CE/AD=1/2
⑴⊿AHF∽∠ADE﹙AAA﹚.∴FH:AH=ED∶AD=1∶2⑵设DE=a,这AD=3a.AE=√10a,AH=√10a/2HP=3√10a/2FH=√10a/6容易证明FG=AE=√10a,∴GP
证明:设正方形的边长为4K∵正方形ABCD,边长为4K∴∠B=∠C=∠D=90,AB=BC=CD=AD=4K∵E是BC的中点∴BE=CE=2K∴AE²=AB²+BE²=1
取BC中点N,过N作NH⊥AE,垂足HM是CD的中点,可知BN=DM易证ΔABN≌ΔADM则有∠BAN=∠DAM因∠BAE=2∠DAM故AN平分角BAE所以有NB=BH由ΔABN≌ΔAHN可得AH=A
(我这个回答近仅限于选择题)用特殊值法,设这个正方形的边长为4,则BC长2,CE长2,CF长1,DF长3,在RT三角形ABE中,有勾股定理得AB的平方加BE的平方等于AE的平方等于20(当然也可以是根
(1)证明:在正方形ABCD中,∠D=∠ABC=90°,∴∠ABF=90°,∴∠D=∠ABF=90°,又DE=BF,AD=AB,∴△ADE≌△ABF.(2)将△ADE顺时针旋转90后与△ABF重合,旋
当∠EGF=45度时,EF垂直于PCD证明: 连接AC、EG交于点H,连接FH 由题意知:FH//PA,FH⊥ABCD 因为PA⊥AB
将三角形AFD旋转到正方形外