正方形abcd的边长为12,点p在bc上,bp=5

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 11:47:58
正方形abcd的边长为12,点p在bc上,bp=5
如图,已知正方形ABCD的边长为4,对称中心为点P,

再问:对称中心是什么?再答:

正方形ABCD的边长为12cm,PA⊥平面ABCD,且PA=12cm,则点P到BD的距离为______.

连结AC交BD于0,∵PA⊥平面ABCD,BD⊂平面ABCD,∴PA⊥BD∵正方形ABCD中,AC⊥BD,∴结合AC、PA是平面PAC内的相交直线,得BD⊥平面PAC∵PO⊂平面PAC,∴PO⊥BD,

正方形ABCD的边长为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,

d.12再问:请说明理由再答:再答:再答:再答:再答:再问:那个为什么DE'最短呢再答:纠正一下,be为最短路径的路径长。点p在ac上,就作d关于ac的对称点,又因ac为对角线、abcd为正方形,d的

如图,正方形ABCD的边长为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P

这题是做对称点以AC为轴做点D的对称点F易证  点F与点B重合所以  DP = BP所以  DP + 

如图,边长为1的正方形ABCD中,P为正方形内一动点,过点P且垂直于正方形两边的线段为

第一个问题:∵ABCD是正方形,又EF⊥AD、GH⊥AB,∴容易证得:ABFE、ADHG都是矩形,∴BF=AE、DH=AG,又AG=AE,∴BF=DH.∵ABCD是正方形,∴AB=AD、∠ABF=∠A

如图,边长为1的正方形ABCD绕点A逆时针

设CD与B'C'的交点为E,连接AE,可知角EAB=60度,则四边形AB'ED的面积为2*1/2*1*1/2=1/2所以阴影的面积为:1*1-1/2=1/2

已知在边长为12的正方形ABCD中有两个动点P,Q同?

PC=QD,AQ=PB,12-3t=t,t=3,AQ=3,AP=9,PB=3QA=DP,t=12*3-3t,t=9S-PQC=36,PC=6,t=10,Q在AB上,P在DC上,PC=6,QB=2,或假

已知正方形ABCD的边长为2,点P为对角线AC上一点,则(.AP

以A为坐标原点,以AB为X轴正方向,以AD为Y轴正方向建立直角坐标系,则A(0,0),B(2,0),C(2,2),D(0,2),∵P点有对角线AC上,设P(x,x),0<x<2所以.AP=(x,x),

如图所示,正方形ABCD的边长为12,划分为12*12个小正方形格

解(1)依题意可依次填表为:11、10、9、8、7.(2)S1=n²+(12-n)[n²-(n-1)²]=-n²+25n-12.①当n=2时,S1=-22+25

如图所示,正方形ABCD和正方形EFGH的边长分别为a和b,点E是正方形ABCD的中心,在正方形EFGH绕着点E旋转的过

不变分析:设旋转后是正方形则边长为1/2a*1/2a=1/4a^2若不为正方形则可以割补成为一个正方形(初四旋转会学,初三全等三角形也可以证明)

如图,已知正方形ABCD的边长为10cm,点E在AB边

(1)1.在△BEP,△CQP中∠B=∠C,BE=CP=6,BP=CQ=4△BEP≌△CQP2.若要△BEP≌△CQP除1之外的情况,则只有BE=CQ=6,BP=CP=5才成立设Q的运动速度为x,则C

正方形ABCD的边长为12cm,在边BC上点P,BP=5cm,折叠这个正方形,

EF=AP=13cm[作DQ‖FE,Q∈AB,⊿ABP≌⊿PAQ.EF‖=DQ=AP]

正方形ABCD的边长为1,G为CD一动点,与CG为一边向正方形ABCD外作正方形GCEF

方法1:当点G运动到CG=-1时,BH垂直平分D.┄9分∵要使BH垂直平分DE,若连结BD,则必有BD=BE∵BC=CD=1,∴BD=BE=∴CE=BE–BC=-1┄10分∴CG=CE=-1因此,当C

如图2边长为6的正方形abcd,绕点c顺时针旋转30°后,得到正方形efcg,

dh=3过f做cd的垂线交cd于o∵cf=6角fcd=60°∴co=3∴do=3∴角ofd=30°∴角dfe=30°∴fd是角ofe的平分线∴hd=do=co=3

正方形ABCD和正方形OEFG的边长均为4,点O是正方形ABCD的中心,则图形阴影部分的面积是

O点作OM,ON垂直BC,CD,BC-OE交点H,OG-DC交点K,OMH-ONK全等,所以阴影是1/4正方形面积=4

已知正方形ABCD的边长为2 点M是BC的中点

(1)四边形CDFP的周长=6,因为AF=FE,PE=PM,所以四边形周长即为AD+DC+CB=6.(2)连接OE、OF、OP,根据三角形AOF与三角形EOF全等、三角形EOP与三角形BOP全等可知,

在边长为8的正方形ABCD中,点O为AD上一动点(4

1、在RT△ODM中,DM²+OD²=OM².∵OM=OA,OD=8-OA.∴X²+(8-OA)²=OA²X²+64-16OA+O

正方形ABCD的边长为a.将足够大的正方形OMNP的一顶点放在正方形ABCD的对称中心O点

(1)重叠部分的面积为1/4a²(2)探究若将正方形OMNP绕点O旋转任意一个角度,此时BE与CF相等,四边形OECF的面积为1/4a²证明:∵四边形ABCD是正方形∴OB⊥OC,

如图,已知正方形ABCD的边长是4,对角线AC、BD相交于点O,另一个边长也为4的正方形OEFG,两个正方形重

不变作OP⊥BC,作OQ⊥CD,证得△OPM≌△OQNS四边形OMCN=S△OQN+S四边形OMCQ=S△OPM+S四边形OMCQ=S正方形OPCQ=1/4S正方形ABCD=1/4*4*4=4

已知点P是边长为8的正方形ABCD所在 平面外的一点,

取Q∈AB使AQ=3QB则QM=6QN=2∠MQN=∠PBC=60º对⊿MQN用余弦定理MN=2√7再问:请问:如何得出QM=6,QN=2?再答:相似三角形对应边成比例。