正方形ABCD边长为1厘米,且BE=2EC,CF=FD

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 05:21:25
正方形ABCD边长为1厘米,且BE=2EC,CF=FD
如图,已知正方形ABCD的边长为10厘米,点E在边AB上,且AE=4厘米,

因为Q与P速度不等,则BP不等于CQ,则BP=CP,BE=CQ.三角形才能全等.题目说AB=BC=10cm,所以BP=CP=1/2BC=5cm,有因为p点的速度为2cm每秒,则2t=5,所以t=2.5

如图,已知正方形ABCD和正方形EFGC,且正方形EFGC的边长为六厘米.请问图中三角AEC的面积是多少?

假设G为CD的中点,延长AD和EF交于H.那么三角形AHE减去三角形ADG,三角形EFG,正方形DHFG则可即108-36-18-36=18平方厘米

如下图,正方形ABCD边长为1

(π(派)-2)/2

如图,已知正方形ABCD和正方形CEFG,且正方形ABCD边长为12cm,则图中阴影部分面积是多少?

【推荐方法:】其实,连接CF,因为∠BFP=45°,∠ANP=45°,所以PF∥AN,△ANB和△ANF同底等高,面积相等,等于大正方形面积的一半.12×12÷2=144÷2=72平方厘米小正方形的边

已知:正方形ABCD的边长为1,正方形EFGH内接于ABCD,AE=a,AF=b,且SEFGH=23,则|b-a|=__

∵四边形ABCD与四边形EFGH是正方形,∴∠A=∠D=∠FEH=90°,EF=EH,∴∠AEF+∠DEH=90°,∠AEF+∠AFE=90°,∴∠DEH=∠AFE,在△AEF和△DHE中,EH=EF

下图中,ABCD、CEFG都是正方形,且正方形ABCD的边长为4厘米,求阴影部分的面积.

根据勾股定理:BD=根号32DF=根号8△BDF是直角三角形所以:阴影部分的面积是16平方厘米再问:小学五年级数学请详细说明再答:那对不起你还没有学勾股定理勾股定理是:直角三角形两直边的平方和等于斜边

如图,已知四边形abcd和cefg都是正方形,且正方形abcd的边长为10厘米,那么图中阴影三角形efd的面积为多少

连接CF,则CF//BD,(同位角相等,都等于45°,两直线平行)因为平行线间的距离相等所以三角形FBD与三角形CBD的面积相等,(等底等高)所以,阴影三角形BDF的面积=10×10/2=50(平方厘

如下图,已知四边形ABCD和CEFG都是正方形,且正方形ABCD的边长为10厘米,那么图中阴影部分的面积是多少?如果CE

不管CEFG多大,面积均为50cm2,以BD为三角形的底,因为CF‖BD,所以三角形的高始终是CF和BD的距离,因此.说明同底等高的三角形面积相等

如图,边长为1的正方形ABCD中,P为正方形内一动点,过点P且垂直于正方形两边的线段为

第一个问题:∵ABCD是正方形,又EF⊥AD、GH⊥AB,∴容易证得:ABFE、ADHG都是矩形,∴BF=AE、DH=AG,又AG=AE,∴BF=DH.∵ABCD是正方形,∴AB=AD、∠ABF=∠A

正方形ABCD,ABEF的边长都是1,且平面ABCD和平面ABEF相互垂直,AB为公共线,M是正方形ABCD对角线AC上

MN²=(a*sin45°)²+(1-a*sin45°)²=a²/2+1-a*根号2+a²/2=1+a²-a*根号2=1-(a*根号2-a&

如图,已知正方形ABCD和正方形CEFG,且正方形ABCD每边长为10厘米,则图中阴影(三角形BFD)部分的面积为___

10×10÷2=100÷2=50(平方厘米);答:图中阴影(三角形BFD)部分的面积为50平方厘米.故答案为:50平方厘米.

1、如图,正方形ABCD边长为4厘米,CG=3厘米,而长方形DEFG的长为DG为5厘米,求长方形DEFG的面积

∵∠EDG=∠ADC=90°.∴∠EDA=∠CDG;又∠E=∠C=90°.∴⊿EDA∽⊿CDG,DE/DC=AD/GD.即DE/4=4/5,DE=16/5.故S长方形DEFG=DE*DG=(16/5)

如图,四边形ABCD是边长为1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1,

(1)因为MD⊥平面ABCD,NB⊥平面ABCD,BC=MD=NB,所以侧视图是正方形及其两条对角线;如下科所示 …(4分)(2)∵ABCD是正方形,BC∥AD,∴BC∥平面AMD;又MD⊥

如下图,正方形ABCD的边长为8厘米,BO长6厘米,AE长为多少厘米

在三角形ABO中AB=10BO=8∠DAE的余角是∠OAB和∠DEA,所以∠OAB=∠DEA△ABO∽△EADBO/AD=AB/AE  6/8=8/AEAE=32/3

如图已知正方形ABCD和正方形DEFG,且正方形ABCD的边长为10厘米.求阴影部分面积.(过程需具体,

答案是50详细过程看图这里采用整体思想,无需求出小正方形的边长 有那步不明白请追问

已知正方形ABCD的边长为1,线段EF//平面ABCD,点E,F在平面ABCD内正投影分别是A,B,且EF到平面ABCD

(1)连接BD由题意得∵EF平行于平面ABCD,平面EFBA交平面ABCD=AB,AB在平面EFBA上∴EA平行FB.EA平行于平面FBD∴∠BFD或其补角为EA与FD所成的角FB=√6/3BD=√2