正方形abcd边长为4,动点P从点B出发沿BC向点C运动
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 15:46:48
少一个条件:P,Q两点同时出发当两点同时出发时,经过路程之比等于速度之比,即AQ=PB*根号2注意到AC=BC*根号2,所有CQ=CP*根号2,三角形PQC是等腰直角三角形,所以PQ与BA平行
x∈[0,1]时,y=1/2xx∈(1,2]时,y=3/4-1/2(x-1)-1/4(2-x)x∈(2,2.5]时,y=1/2(5/2-x)把y=1/3分别代入三式,解得x=2/3
再问:对称中心是什么?再答:
由题意可知:当动点P从A运动到B时,S△ABE=12×1×1=12,当动点P从B运动到C时,S△ACE=12×12×1=14,由于14<13<12,因此满足题意的点P的位置只有两种情况(2分)①当0<
PC=4-x.QC=﹙4-x﹚x/4DQ=4-QC=[16-4x+x²]/4S⊿ADQ=DQ×4/2=2DQ=8-2x+x²/22/3是3/2还是2/3?但是8-2x+x²
(1)作PE垂直AC于E.显然,AC=根号2,AQ=2X,BP=X,PC=1-X.角ACB=45度,所以,PE=CE=(根号2)/2PC=(根号2)/2(1-X).所以,y=1/2*AQ*PE=-(根
1)在AB上,设s=kt+b由题意得:4=2k+b8=8k+b得:k=2/3b=8/3所以解析式就得出了.在BC上时设s1=k1t+b由题意得:0=10k+b,8=8k+b所以函数解析式求出来了.2)
解题思路:(1)∵四边形ABCD是正方形,∴∠B=∠C=90°∵PQ⊥AP,∴∠APB+∠QPC=90°,∠APB+∠BAP=90°∴∠BAP=∠QPC∴△ABP∽△PCQ解题过程:解:(1)∵四边形
PC=QD,AQ=PB,12-3t=t,t=3,AQ=3,AP=9,PB=3QA=DP,t=12*3-3t,t=9S-PQC=36,PC=6,t=10,Q在AB上,P在DC上,PC=6,QB=2,或假
当动点P在A---B间运动时,如图(1) ∵ABCD是边长为1的正方形 ∴ △APE的高是1 而AP=x ,△APE的面积为y ∴ 
根据已知条件先解出AED三边长,用勾股定理.然后再利用相似三角形边长比例相等的关系,分别用不同的边的比值相等.列三个三元一次方程.解出来AEP三种答案,再讨论成立否.求X.不清楚了在问我.按这个先算算
1.用正方形ABCD面积-除△APE外的3个小△PB=X-1PC=2-X则△ADE=0.5*1*0.5,△ECP=1/2-X/4,△=X/2-1/2△APE=Y=1-1/4-1/2+X/4-X/2+1
s=二分之根号二乘x再问:取值范围再答:由于正方形两条对角线互相垂直且平分,所以ΔPBC底边BP上的高就是对角线的一半;因为对角线长度用勾股定理计算得根2*正方形边长,也就是1.414*2=2.828
当P在边AB上时,△APC的面积=1/2,则高BC=2,所以底边AP=1/2当P在边BC上时,△APC的面积=1/2,则高AB=2,所以底边PC=1/2.所以AP=4-1/2=7/2
分情况讨论:1.若p在AB边上:Y=X/22.若p在BC边上:Y=1-1/4-(2-x)/4-(x-1)/2=3/4-x/43.若p在CE边上:Y=[1/2-(x-2)]*1/2=5/4-1/2x第二
(1)证明:在三角形BPC中,角BPC=90度-角PBC角BPE=90度,所以,角BPC=90度-角EPD因此角PBC=角EPD又角BCP=角PDE=90度所以,三角形BPC相似三角形PED(2)在直
解1.S=S□ABCD-S△ABP=4*4-4*x/2=16-2x2.x的取值范围为0
本题应分两段进行解答,①点P在AB上运动,点Q在BC上运动,②点P在AB上运动,点Q在CD上运动,依次得出S与t的关系式.①点P在AB上运动,点Q在BC上运动,此时AP=t,QB=2t,故可得S=1/
2/3吧,具体过程也太烦人了