正方形内接于圆o边长为四,则圆内接正三角形边长是多少

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 01:15:18
正方形内接于圆o边长为四,则圆内接正三角形边长是多少
已知正方形内接于半径为10,圆心角为90度的扇形,则正方形的边长

设正方形边长为a, 第一种左半边图a方+a方=10方   解得a=5倍根号2我真是画不明白图,插入不了字母  不知道你看明白不 第

已知边长为√6的正方形内接于圆O,求圆O的内接等边三角形的周长

正方形的对角线长为二倍根号三,既为圆的直径,所以圆的半径为根号三,根据一个定理得圆的半径占等边三角形高的三分之二,所以等边三角形的高为二分之三倍根号三,所以等边三角形的边长为三,周长为九(你可以画图来

正三棱锥A-BCD内接于球O,且底面边长为3

如图,设三棱锥A-BCD的外接球球心为O,半径为r,BC=CD=BD=3,AB=AC=AD=2,令AM⊥平面BCD,则M为正△BCD的中心,则DM=1,AM=3,OA=OD=r,由图知(3-r)2+1

已知 如图 正方形ABCD内接于圆O EF分别为DA DC中点 过EF作弦MN 若圆O的半径为12求

如图,EF是⊿ACD的中位线,OP=OD/2=6. MN=2PM=2√(12²-6²)=12√3.PB=18.MB=NB=√[18²+(

如图在边长是4的正方形ABCD中,以AD为直径作圆O,以C为圆心,CD长为半径作弧BD,交圆O于正方形内一点E

如图,AD中点O即半圆的圆心,作辅助线,OE、OC、OF因为E在半圆上,所以OE=OD=2E也在四分之一圆上,所以EC=DC=4加上公共边OC马上我们就可以知道△ODE和△OCE是全等的直角三角形(S

已知 如图 正方形ABCD内接于圆O EF分别为DA DC中点 过EF作弦MN 若圆O的半径为12

连结OE、OF可得四边形OEDF为正方形,连结OD交EF于G,则OG=1/2OD=6.连结OM,在Rt△OGM中,OM=12,OG=6,由勾股定理得MG=6倍根号下3,再由垂径定理可求得MN=2MG=

已知正方形ABCD是圆O的内接正方形,他的边长为2,求半径和边心距

没有图啊,...你就凑发着听吧嘻嘻证明:做ON垂直于BC,垂足为N,并延长N到园O至点M做OE垂直于CD,垂足为E,连接OC因为四边形ABCD为正方形所以四边形ONCE为正方形所以OC为正方形ONCE

同一个圆的内接正方形和外切正方形的边长之比为多少?

根号2你设圆的直d则内切正方形的边长为根号2分之d外切正六变形的边长为1/2d两者一比就可以算出来了!再问:是外切正方形,不是六边形。再答:连接圆心和切点,作出边心距,可得到内接正方形和它的外切正方形

已知:圆O的半径为R,求它的内接正三角形,正方形及正六边行的边长之比,与面积之比

(自己作个草图,很容易理解的)因为圆O的半径为R,所以它的内接正三角形边长是√3R,面积是3√3R^2/4内接正方形的边长是√2R,面积是2R^2内接正六边形的边长是R,面积是3√3R^2/2所以圆O

已知 圆O的半径为R,求它的内接正三角形,正方形及正六边形的边长之比,面积之比

设圆的半径为R,如图(一),连接OB,过O作OD⊥BC于D,则∠OBC=30°,BD=OB•cos30°=32R,故BC=2BD=3R;如图(二),连接OB、OC,过O作OE⊥BC于E,则

如图,正方形ABCD内接于⊙O,⊙O的直径为 根号二分米,若在这个圆面上随意抛一粒豆子,则豆

1、此概率=正方形面积除以圆面面积2、正方形面积=AD*CD3、AD平方+CD平方=2分米的平方,所以AD=CD=根号2分米,所以AD*CD=根号2*根号2=2平方分米4、圆的面积=πR平方=π*1的

已知正三角形abc内接于圆o,四边形defg为圆o的内接正方形(d、e在直径上,f、g在圆上的正方形)S三角形abc=a

设圆半径为r,则内接正三角形ABC的边长等于r√3,高等于3r/2,面积S3=r²3√3/4;一边在直径上的内接正方形DEFG边长为r√(4/5),面积S4=4r²/5;S3/S4

边长为2的正方形ABCD有一内切圆,又正三角形EFG内接于圆O,求证三角形EFG的边长

正方形内切圆的半径为正方形边长的一半,即:r=2/2=1,圆内接正三角形的中心点是外心,也是重心,所以中线长的三分之二等于圆的半径,即正三角形的中线长为:1/(2/3)=3/2,则正三角形EFG的边长

O是正方形ABCD对角线上一点,以点O为原型,OA长为半径的圆O与BC相切于点M.若正方形ABCD的边长为1,求圆O的半

过O作ON⊥CD于N,连接OM,∴OM⊥BC,∴AB∥OM∥DC,∵AC为正方形ABCD对角线,∴∠NOC=∠NCO=∠MOC=∠MCO=45°,∵OM=ON,∴四边形ONCM为正方形,∴ON⊥OM,

边长为10厘米的正方形ABCD,分别以四顶点为圆心画四分之一圆,四弧交于四点

阴影部分的面积=(π/3-√3+1)a²=100(π/3-√3+1)(平方厘米)具体过程请参考下面的连接.

已知圆半径为9,则它的内接三角形的边长是多少、内接正方形边长是多少,内接正六

内接三角形的边长=﹙9√3﹚/2内接正方形边长=9√2内接正六边形=9

已知一个圆的外切正方形的边长为四厘米求这个圆的内接正三角形的边心距和边长

连接OFOE过点O作ON⊥EF由已知得:⊙O的半径为2,∠EOF=120º∴∠EON=∠FON=60º又∵ON⊥EF∴∠ONF=90º∴∠OFN=30º∴ON=

如图,等边三角形ABC内接于圆O,边长为4cm,求图中阴影部分的面积

三角形的高为2倍根号3,内切圆的半径是2倍根号3/3,则阴影面积为12倍根号3-4π/3