正方形的边长是1,弧AC和弧BD都是以1为半径
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 13:42:49
(1).作PE⊥AC于E则△CEP相似于△CBAPE/AB=CP/AC正方形ABCD中AB=1∴AC=根号2又CP=1-XPE=(1-X)根号2*1/1S△APQ=y=AQ*PE/2=(-根号2/2)
(1)如图,过点P作PE⊥AC于E,∵AC是正方形ABCD的对角线,∴∠ACB=45°,∴△PCE是等腰直角三角形,∵点P的速度为1cm/s,∴PC=1-x,∴PE=22PC=22(1-x),∵点Q的
a+b=c得a=c-b(1)a+b+c=2c,延长AC到D点,使得AC=CD,AD就是要求的向量.(2)a-b+c=a+(c-b)=2a,延长AB至E点,使得AB=BE,AE就是要求的向量.
因为Q的运动速度为√2厘米/秒,P的运动速度为1厘米/秒.且AC=√2,BC=1所以:CQ/AC=CP/BC所以:AB‖PQ.而:BP=x,AQ=(√2)x所以:PQ=PC=1-x,所以:△ABP的面
少一个条件:P,Q两点同时出发当两点同时出发时,经过路程之比等于速度之比,即AQ=PB*根号2注意到AC=BC*根号2,所有CQ=CP*根号2,三角形PQC是等腰直角三角形,所以PQ与BA平行
设点A向直线l作的垂线,垂足为E,点C向直线l作的垂线,垂足为F,则有:∠ABE+∠CBF=90°,∠ABE+∠BAE=90°∴∠BAE=∠CBF∵∠E=∠F=90°,AB=BC∴△ABE≌△BCF∴
S△APQ=S△ABC-S△ABP-S△CPQ=1/2-1/2*X-1/2(1-X)*(1-X)=根号2/2*(-X^2+X),X
(1)PQ=1-x,所以△APQ以AQ为的高为(1-x)*0.5*2^0.5.y=0.5*(1-x)^2*0.5*2^0.5.;(0
1)x的取值当然是从0到1根据速度来计算,P和Q同时到达C点,△APQ的面积是梯形ABPQ减去三角形ABP的面积,也就是三角形ABC的面积减去三角形PCQ的面积再减去三角形ABP的面积.y=△ABC-
这个题已经有好几个人提问过了0
1)x的取值当然是从0到1根据速度来计算,P和Q同时到达C点,△APQ的面积是梯形ABPQ减去三角形ABP的面积,也就是三角形ABC的面积减去三角形PCQ的面积再减去三角形ABP的面积.y=△ABC-
S△APQ=S△ABC-S△ABP-S△CPQ=1/2-1/2*X-1/2(1-X)*(1-X)=根号2/2*(-X^2+X),X
(1)作PE垂直AC于E.显然,AC=根号2,AQ=2X,BP=X,PC=1-X.角ACB=45度,所以,PE=CE=(根号2)/2PC=(根号2)/2(1-X).所以,y=1/2*AQ*PE=-(根
1.由题意得y=1/2-x/2-(1/2)√2(1-x)²*√2/2=(-x²+x)/2,0≤x≤1.2.y=1/6=(-x²+x)/2,判别式=-3
设点A向直线l作的垂线,垂足为E,点C向直线l作的垂线,垂足为F,则有:∠ABE+∠CBF=90°,∠ABE+∠BAE=90°∴∠BAE=∠CBF∵∠E=∠F=90°,AB=BC∴△ABE≌△BCF∴
向量AB=a.向量BC=b,向量AC=c所以向量AB+向量BC=向量AC即a+b=c所以a-b+c=a-b+a+b=2a
不变分析:设旋转后是正方形则边长为1/2a*1/2a=1/4a^2若不为正方形则可以割补成为一个正方形(初四旋转会学,初三全等三角形也可以证明)
设与边长为7cm的正方形相连的直角三角形的长直角边为a,短直角边为b,\x0d则,a^2+b^2=7^2=49.\x0d设以a为斜边的直角三角形的长直角边为e,短直角边为f,\x0d则,e^2+f^2
1.做法一:连接ACAC//FG所以S△FGA=S△FGC=b²/2做法二:S△FGA=ABCD+FCGE-S△ABG-S△ADF-S△EFG=a²+b²-(a+b)a/
1(1)∵AE平分∠BAC,EF⊥AC.∴∠BAE=∠FAE,∠B=90°,∠AFE=90°∵在△ABE与△AFE∴∠BAE=∠FAE∠B=∠AFEAE=AE∴△ABE≌△AFE∴BE=EF1(2)正