正方形边长为6,点o是对角线的交点,点e在cd
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 04:53:36
(1)∵ABCD是正方形,∴AC⊥BD,∵PF⊥BD,∴PF∥AC,同理PE∥BD,∴四边形PFOE为矩形,故PE=OF.又∵∠PBF=45°,∴PF=BF.∴PE+PF=OF+FB=OB=acos4
1.以O为原点,OA,OD,OB为x,y,z轴建立坐标系,则E(2,2,0),F(-2,0,2)所以向量OE=(2,2,0),OF=(-2,0,2)cos=OE*OF/(|OE||OF|)=(-4+0
(2)△AOE与△BOF中∠EAO=∠45°OA=OB∠AOE=90-∠BOE=∠BOF∴△AOE≌△BOF(角,边,角)①(1)设正方形边长为a由①得S△AOE=S△BOF从而两个正方形重叠部分的面
(1)电量为+Q的点电荷在O点产生的场强大小为:E1=kQ(22L)2=2kQL2,方向由O→C;电量为-2Q的点电荷在O点产生的场强大小为:E2=k2Q(22L)2=4kQL2,方向由O→B;根据平
(1)∵ABCD是正方形,∴AC⊥BD,∵PF⊥BD,∴PF∥AC,同理PE∥BD,∴四边形PFOE为矩形,故PE=OF.又∵∠PBF=∠BPF=45°,∴PF=BF.∴PE+PF=OF+FB=OB=
1.PE=AE,PF=EOPE+PF=AO=sqrt(2)/22.PE=FO,PF=BFPE-FB=BO=sqrt(2)/2
⑴当P点在AB上时:∵正方形边长=√2,对角线AC=√2×√2=2,∴AO=BO=1,∴正方形面积=2,∴△AOB的面积=2/4=½,连接PO,则△APO面积+△BPO面积=△ABO面积=&
提示:⑴过P作BC的垂线,垂足为G.∵P是AC上的点,∴PG=PF,又 ∠BPG+∠EPG=∠RPG+∠EPF=90°, 将⊿PBG绕P逆时针旋转90°;与
让正方形ABCD旋转一定角度,当AD边过F点时,AB一定过O点.此时两个正方形重叠的阴影部分的面积就是三角形EAD的面积因为三角形EAD的面积=正方形OGEF的四分之一=2.25
(1)当正方形绕点OA1B1C1O绕点O转动到其边OA1,OC1分别于正方形ABCD的两条对角线重合这一特殊位置时,显然S两个正方形重叠部分=14S正方形ABCD;(2)当正方形绕点OA1B1C1O绕
解,正方形ABCD边长为6,则对角线长为6√2,即菱形BEFD边长为6√2,则菱形对角线长分别为6√2和6√6,面积=两条对角线乘积的1/2=36√3.
晕可以将oc连接,看不是分割成两部分了吗?由于o是正方形ABCD的对角线交点,设oe交bc于h,og交cd于j,obh等于ocj,那么图中阴影部等于三角形obc(即正方形ABCD的4分之一)啊懂了吧?
这个我初三也做过,很简单再问:可现在我初二再答:用不用我帮你算再问:好的
当将正方形OEFG绕点O转动时,两个正方形重叠面积不发生变化.设OG与DC交于M,OE与BC交于N,∵OD=OC,∠ODM=∠OCN,∠DOM∠=∠CON=90-∠COM∴⊿DOM≌⊿CON,∴S⊿D
解析:(1)圆周角相等∴∠AED=∠ACD=45°(2)不全等的三角形很多,不全等的相似三角形有这个:△APC和△DPE相似,但是不全等,证明:∠PAC=∠PDE,∠PCA=∠PED∴△PAC∽△PD
证明:(1)连接PD,BE∠BPE=∠BCE=90°,(BCEP四点共圆,可得∠CBE=∠CPE,∠PCE=∠PBE,∠CBP=∠CBE+∠PBE=∠CPE+∠PCE=∠PEF于是有∠CBP=∠CDP
分析你听哦设OE交AB于M,OG交BC于N,不难证明△OMB≌△ONC其实在转动过程中重叠部分的面积始终=△OBC的面积=正方形面积的4分之1所以(1)y=4x图像是过原点和(1,4)一条射线,原点除
(1)等边直角三角形,高1/2a,面积=1/4a²(2)90X+45°,(X是整数)面积=1/4a²(3)相同,由几何三角形2角度数相等及两角相邻边相等,得出该两三角形相同,即可将
∵ABCD和A′B′C′O都是边长相等的正方形∴OA=OB,∠AOB=∠A'OC′=90°∠BAO=∠OBC=45°∴∠AOB-∠BOE=∠A′OC′-∠BOE,即∠AOE=∠BOF∴△AOE≌△BO
不变作OP⊥BC,作OQ⊥CD,证得△OPM≌△OQNS四边形OMCN=S△OQN+S四边形OMCQ=S△OPM+S四边形OMCQ=S正方形OPCQ=1/4S正方形ABCD=1/4*4*4=4