正项级数1-n-sin1-n
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 18:07:25
因为lim(n->∞)sin1/n=0而sin1/n递减所以级数(-1)^nsin1/n收敛而级数sin1/n由lim(sin1/n)/(1/n)=1而级数1/n发散即级数sin1/n发散所以原级数条
因为a(n)单调有界、正,a(n)->a>=0.1、如果a=0,结果不一定正确.例如a(n)=1/n,级数的通项=n/(n+1)-(n+1)/n=-(2n+1)/(n(n+1)),这个不收敛.2、如果
条件收敛,这是交错级数.
http://zhidao.baidu.com/question/77300162.html
ln(n+1/n-1)=ln(1+2/n-1),n趋于无穷时,ln(1+2/n-1)1的时候级数收敛.所以原式收敛.懂没?
当n趋于无穷大时,1/n趋向于0;sin1/n~1/n;而调和级数1/n发散,所以原级数发散
当r≤1时,1/(1+r^n)当r→+∞时不趋向于0,所以发散.当r>1时,1/(1+r^n)<(1/r)^n,所以收敛
第一个,2n-1~2n,所以(n-√n)/(2n-1)~(n-√n)/2n=1/2--1/2√n,因为1/√n>1/n,所以是发散的也可求极限,极限不是0.所以发散第二个,发散ln(n+1/n-1)~
设y=ln(1+x)/(1+x)(x>2)因y'=[1-ln(1+x)]/(1+x)^21/n而∑1/n发散,故原级数不是绝对收敛
ln(1+n)/(n^2)和1/n^(3/2)比较[ln(1+n)/(n^2)]/[1/n^(3/2)]=ln(1+n)/(n^(1/2))ln(1+n)/(n^(1/2))求导得2(√n)/(1+n
通项极限非零,因此发散
lnx的增长率永远比不上任何一个幂函数的增长率,所以lnn
因为当n>2时lnn>ln2>0所以(1/n)lnn>1/n>0而1/n是调和级数,分母上次方为1,级数发散所以由比较判别法(1/n)lnn也发散
1、n/(2n+1)
应该是收敛的,比式判别法就是如果得n+1项与第n项的比如果始终小于一个小于1的正数就收敛,大于1就发散,(1/(n+1)!)/(1/n!)=1/n+1肯定是小于1的,所以应该是收敛的.再问:1/n+1
后项比前项=[2^(n+1)×(n+1)!/(n+1)^(n+1)]/2^(n)×(n)!/(n)^(n)]=2/(1+1/n)^n趋于2/e
如图,图中极限为无穷,所以级数发散.
收敛.这是交错级数,由Leibniz准则,后项绝对值小于前项绝对值(可有二者作商平方比较出),然后一般项绝对值极限为零,所以可判定其收敛再问:有没有具体过程啊。。。再答:首先它是交错级数,那(-1)^
http://www.math.org.cn/forum.php?mod=viewthread&tid=28241&extra=
lim(n→∞)1/n(sin1/n+……+sin(n-1)/n)=∫(0,1)sinxdx=1-cos1