正项级数an,lnan ln(1 n)=e^b,b>1时收敛
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 18:04:30
发过去了
http://zhidao.baidu.com/question/77300162.html
级数的加项极限是1,不满足收敛的必要条件(加项趋于0),所以该级数发散.
a(2n)=1/2^na(2n+1)=1/n这样级数的正部收敛,而负部发散,所以级数发散.(用这种方法可以构造出很多例子)说明交错级数的判别条件还是很重要的.
用比较定理呗,构造一个新级数,b_{2n-1}=0,b_{2n}=a_{2n}.于是∑b_n被收敛级数∑a_n所界定,自然也收敛
这个是定理啊,大收敛推出小收敛,基本上不用证明.如果非要证也很简单,写一写定义就可以了.再问:老师问我们为什么--我该怎么说求解~再答:你是什么专业的?用e-N定理说一下就出来了。对任意e>0存在N,
用积分中值定理∫[(n-1)->n]dx/x(lnx)^p=[n-(n-1)]1/[ξ(lnξ)^p]=1/[ξ(lnξ)^p],其中ξ∈[n-1,n],而f(x)=1/x(lnx)^p当p>1时是个
我来上个图.再答:再问:原来是用基本不等式,谢谢!再答:不客气
应该是级数分为数项级数与函数项级数,正项级数是数项级数中的一种,幂级数又是函数项级数中性质比较好的一种级数,之所以重点研究这两类,一是因为简单,二是因为性质好!你无需将他们分类!没必要!掌握好性质及敛
因为lim(n->∞)1/(an+b)/(1/n)=1/a而Σ1/n发散所以该级数发散.
lnx的增长率永远比不上任何一个幂函数的增长率,所以lnn
与调合级数比较,limn^(-1-1/n)/n^(-1)=lim1/n^(1/n)=1,由比例判别法知两者同敛散,故原级数发散.上式最后一步是常用极限n开n次方=1,证明可假设此式=1+a,即n=(1
1/根号(n(n^2+1))因为n(n^2+1)=n^3+n>n^31/(n(n^2+1))Σ1/n^(3/2)因为3/2>1所以这个级数收敛,根据比较判别法,原级数收敛
第一题,分子分母同乘(√(n+1)+√(n-1)),再与n^(3/2)作比较,比较判别法的极限形式,收敛第二题,得再想想,sorry(仅供参考)
http://www.math.org.cn/forum.php?mod=viewthread&tid=28241&extra=
因为lim(n-->∞)ln(1+1/n)/(1/n)=1也就是这个级数与1/n等价所以是发散的或者根据对任意的nln(1+1/n)>1/n+1以及级数∑1/n+1发散来判断这个级数发散
利用角标和性质:m+n=p+q在等比数列中有:am*an=ap*aq所以a2*a8=a4*a6=6a4+a6=5,联立方程组解得a4=3,a6=2或a6=3,a4=2由于an+1
分情况一,正项级数则收敛,简单证明下设∑An=k则an必然有界an中m项和为∑bm